Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	31

1 Use law for the logarithm of a power at least once *M1
Obtain correct linear equation, e.g. $5 x \operatorname{In} 2=(2 x+1)$ In $3 \quad$ A1
Solve a linear equation for x
M1 dep *M
Obtain $x=0.866$
A1
[4]

2 Attempt calculation of at least 3 ordinates M1
Obtain 9, 7, 1, 17
A1
Use trapezium rule with $h=1 \quad$ M1
Obtain $\frac{1}{2}(9+14+2+17)$ or equivalent and hence 21
A1

3 Either Obtain correct (unsimplified) version of x^{2} or x^{4} term in $\left(1-2 x^{2}\right)^{-2}$
Obtain $1+4 x^{2}$
Obtain $\ldots+12 x^{4}$
Obtain correct (unsimplified) version of x^{2} or x^{4} term in $\left(1+6 x^{2}\right)^{\frac{2}{3}} \quad$ M1
Obtain $1+4 x^{2}-4 x^{4}$
Combine expansions to obtain $k=16$ with no error seen A1
Or Obtain correct (unsimplified) version of x^{2} or x^{4} term in $\left(1+6 x^{2}\right)^{\frac{2}{3}} \quad$ M1
Obtain $1+4 x^{2}$ A1
Obtain $\ldots-4 x^{4}$ A1
Obtain correct (unsimplified) version of x^{2} or x^{4} term in $\left(1-2 x^{2}\right)^{-2} \quad$ M1
Obtain $1+4 x^{2}+12 x^{4} \quad$ A1
Combine expansions to obtain $k=16$ with no error seen A1

4 Differentiate to obtain form $a \sin 2 x+b \cos x \quad$ M1
Obtain correct $-6 \sin 2 x+7 \cos x \quad$ A1
Use identity $\sin 2 x=2 \sin x \cos x \quad$ B1
Solve equation of form $c \sin x \cos x+d \cos x=0$ to find at least one value of $x \quad$ M1
Obtain 0.623 A1
Obtain 2.52
Obtain 1.57 or $\frac{1}{2} \pi$ from equation of form $c \sin x \cos x+d \cos x=0$
Treat answers in degrees as MR - 1 situation

Page 5	Mark Scheme	Syllabus \bar{s}	Paper
	Cambridge International A Level - May/June 2015	9709	31

5 (a) Use identity $\tan ^{2} 2 x=\sec ^{2} 2 x-1$
Obtain integral of form $a x+b \tan 2 x$
Obtain correct $3 x+\frac{1}{2} \tan 2 x$, condoning absence of $+c$
(b) State $\sin x \cos \frac{1}{2} \pi+\cos x \sin \frac{1}{6} \pi$

Simplify integrand to $\cos \frac{1}{6} \pi+\frac{\cos x \sin \frac{1}{6} \pi}{\sin x}$ or equivalent
Integrate to obtain at least term of form $a \operatorname{In}(\sin x)$
Apply limits and simplify to obtain two terms
Obtain $\frac{1}{8} \pi \sqrt{3}-\frac{1}{2} \ln \left(\frac{1}{\sqrt{2}}\right)$ or equivalent
B1
*M1
M1 dep *M
A1

6 (i) Obtain $\pm\left(\begin{array}{c}2 \\ -3 \\ -4\end{array}\right)$ as direction vector of l_{1}
State that two direction vectors are not parallel
B1
Express general point of l_{1} or l_{2} in component form, e.g. $(2 \lambda, 1-3 \lambda, 5-4 \lambda)$ or $(7+\mu, l+2 \mu, 1+5 \mu)$

B1
Equate at least two pairs of components and solve for λ or for μ
Obtain correct answers for λ and μ
A1
Verify that all three component equations are not satisfied (with no errors seen)
A1
(ii) Carry out correct process for evaluating scalar product of $\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

Use correct process for finding modulus and evaluating inverse cosine
M1
Obtain 79.5° or 1.39 radians

7 Separate variables and factorise to obtain $\frac{\mathrm{d} y}{(3 y+1)(y+3)}=4 x \mathrm{~d} x$ or equivalent State or imply the form $\frac{A}{3 y+1}+\frac{B}{y+3}$ and use a relevant method to find A or B Obtain $A=\frac{3}{8}$ and $B=-\frac{1}{8}$
Integrate to obtain form $k_{1} \ln (3 y+1)+k_{2} \ln (y+3)$
A1

Obtain correct $\frac{1}{8} \ln (3 y+1)-\frac{1}{8} \ln (y=3)=2 x^{2}$ or equivalent M1

Substitute $x=0$ and $y=1$ in equation of form $k_{1} \ln (3 y+1)+k_{2} \ln (y+3)=k_{3} x^{2}+c$
to find a value of c
Obtain $c=0$
Use correct process to obtain equation without natural logarithm present
Obtain $y=\frac{3 e^{16 x^{2}}-1}{3-e^{16 x^{2}}}$ or equivalent
A1

Page 6	Mark Scheme	Syllabus \bar{s}	Paper
	Cambridge International A Level - May/June 2015	9709	31

8 (i) Either Expand $(2-\mathrm{i})^{2}$ to obtain 3-4i or unsimplified equivalent
B1 Multiply by $\frac{3+4 \mathrm{i}}{3+4 \mathrm{i}}$ and simplify to $x+\mathrm{i} y$ form or equivalent Confirm given answer $2+4 \mathrm{i}$
Or Expand $(2-\mathrm{i})^{2}$ to obtain $3-4 \mathrm{i}$ or unsimplified equivalent B1 Obtain two equations in x and y and solve for x or y M1 Confirm given answer $2+4 \mathrm{i}$ A1
(ii) Identify $4+4$ or $-4+4$ i as point at either end or state $p=2$ or state $p=-6$

B1
Use appropriate method to find both critical values of p M1
State $-6 \leqslant p \leqslant 2$
A1
(iii) Identify equation as of form $|z-a|=a$ or equivalent

Form correct equation for a not involving modulus, e.g. $(a-2)^{2}+4^{2}=a^{2}$
State $|z-5|=5$
A1
A1
[3]

9 (i) Use product rule to find first derivative
M1
Obtain $2 x \mathrm{e}^{2-x}-x^{2} \mathrm{e}^{2-x} \quad$ A1
Confirm $x=2$ at M A1
(ii) Attempt integration by parts and reach $\pm x^{2} \mathrm{e}^{2-x} \pm \int 2 x \mathrm{e}^{2-x} \mathrm{~d} x$

Obtain $-x^{2} \mathrm{e}^{2-x}+\int 2 x \mathrm{e}^{2-x} \mathrm{~d} x$
Attempt integration by parts and reach $\pm x^{2} \mathrm{e}^{2-x} \pm 2 x \mathrm{e}^{2-x} \pm 2 \mathrm{e}^{2-x}$
A1

Obtain $-x^{2} \mathrm{e}^{2-x}-2 x \mathrm{e}^{2-x}-2 \mathrm{e}^{2-x}$
Use limits 0 and 2 having integrated twice *M1

Obtain $2 \mathrm{e}^{2}-10$

10 (i) Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2}{t+2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=3 t^{2}+2$
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(3 t^{2}+2\right)(t+2)$
A1
Identify value of t at the origin as -1 B1
Substitute to obtain $\frac{5}{2}$ as gradient at the origin A1
(ii) (a) Equate derivative to $\frac{1}{2}$ and confirm $p=\frac{1}{3 p^{2}+2}-2$
(b) Use the iterative formula correctly at least once

B1

Obtain value $p=-1.924$ or better $(-1.92367 \ldots)$
Show sufficient iterations to justify accuracy or show a sign change in appropriate interval

A1
Obtain coordinates $(-5.15,-7.97)$
A1

