Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - May/June 2015	9709	$\mathbf{2 2}$

1 (i) Introduce logarithms and use power law M1
Obtain $x=21.6$
A1
$\begin{array}{ll}\text { (ii) Obtain or imply }-21.6 \text { or }-21 \text { as lower value } & \text { B1 } \\ \text { State } 43 & \text { B1 }\end{array}$

2 (i) Substitute $x=-2$ into expression and equate to zero
Obtain $-32+4 a+2(a+1)-18=0$ or equivalent
Obtain $a=8$
(ii) Attempt to find quadratic factor by division, inspection, ...

Obtain $4 x^{2}-9$ A1
State $(x+2)(2 x-3)(2 x+3)$
A1

3 (i) Use identity $\sec ^{2} \theta=1+\tan ^{2} \theta$
B1
Solve three-term quadratic equation in $\tan \theta$ M1
Obtain at least $\tan \theta=\frac{5}{2}$ A1
(ii) Substitute numerical values into $\tan (A+B)$ identity M1
Obtain $\frac{\frac{5}{2}+(-1)}{1-\frac{5}{2}(-1)}$ or equivalent, following their positive answer from part (i)
Obtain $\frac{3}{7}$ or exact equivalent and no other answers

4 (i) Differentiate to obtain $\mathrm{e}^{x}-8 \mathrm{e}^{-2 x}$
Use correct process to solve equation of form $a \mathrm{e}^{x}+b \mathrm{e}^{-2 x}=0 \quad$ M1
Confirm given answer $\ln 2$ correctly A1
(ii) Integrate to obtain expression of form $p \mathrm{e}^{x}+q \mathrm{e}^{-2 x} \quad$ M1

Obtain correct $\mathrm{e}^{x}-2 \mathrm{e}^{-2 x} \quad$ A1
Apply both limits correctly M1 depM
Confirm given answer $\frac{5}{2}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - May/June 2015	9709	$\mathbf{2 2}$

5 (i) Draw recognisable sketch of $y=16-x^{4}$
B1
Draw recognisable sketch of $y=|3 x|$
B1
Indicate in some way the two points of intersection B1 depBB
(ii) Use iterative process correctly at least once M1

Obtain final answer 1.804
A1
Show sufficient iterations to justify answer or show sign change in the interval (1.8035, 1.8045)

A1
(iii) State $(1.804,5.412)$

B1
State $(-1.804,5.412)$, following their first point
B1 ${ }^{\wedge}$

6 (i) Solve three-term quadratic equation for $\sin x$
M1
Obtain at least $\sin x=-\frac{1}{2}$ and no errors seen A1
Obtain $x=\frac{7}{6} \pi$
A1
[3]
(ii) State $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x \quad$ B1

Obtain given $5+8 \sin x-2 \cos 2 x$ with necessary detail seen B1
Integrate to obtain expression of form $a x+b \cos x+c \sin 2 x \quad$ M1
Obtain correct $5 x-8 \cos x-\sin 2 x \quad$ A1
Apply limits 0 and their x-value correctly M1 depM
Obtain $\frac{35}{6} \pi+\frac{7}{2} \sqrt{3}+8$ or exact equivalent A1 [6]

7 (a) Differentiate $4 \ln y$ to obtain $\frac{4}{y} \times \frac{\mathrm{d} y}{\mathrm{~d} x}$
Differentiate $6 x y$ to obtain $6 y+6 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1
Substitute 1 and 1 and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain $-\frac{9}{10}$ or equivalent A1
(b) Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=-10 t^{-2}-1$

Obtain derivative of form $k(2 t-1)^{-\frac{1}{2}}$ for $\frac{\mathrm{d} y}{\mathrm{~d} t}$ M1

Obtain correct $(2 t-1)^{-\frac{1}{2}}$
$\begin{array}{ll}\text { Identify value of } t \text { as } 5 & \text { B1 }\end{array}$
Obtain expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ correctly,with numerical value of t substituted M1

Obtain $-\frac{5}{21}$ or exact equivalent

