Page 4		Mark Scheme	9709 s	15 ms 22 Paper 22	
		Cambridge International AS Level – May/June 2015	Syllabus 9709		
1	(i)	Introduce logarithms and use power law Obtain $x = 21.6$		M1 A1	[2]
	(ii)	Obtain or imply –21.6 or –21 as lower value State 43		B1 B1	[2]
2	(i)	Substitute $x = -2$ into expression and equate to zero Obtain $-32 + 4a + 2(a+1) - 18 = 0$ or equivalent Obtain $a = 8$		M1 A1 A1	[3]
	(ii)	Attempt to find quadratic factor by division, inspection, Obtain $4x^2 - 9$ State $(x+2)(2x-3)(2x+3)$		M1 A1 A1	[3]
3	(i)	Use identity $\sec^2 \theta = 1 + \tan^2 \theta$ Solve three-term quadratic equation in $\tan \theta$ Obtain at least $\tan \theta = \frac{5}{2}$		B1 M1 A1	[3]
	(ii)	Substitute numerical values into $tan(A+B)$ identity Obtain $\frac{\frac{5}{2} + (-1)}{1 - \frac{5}{2}(-1)}$ or equivalent, following their positive answer from part (i) Obtain $\frac{3}{7}$ or exact equivalent and no other answers		M1 A1∜ [≜] A1	[3]
4	(i)	Differentiate to obtain $e^x - 8e^{-2x}$ Use correct process to solve equation of form $ae^x + be^{-2x} = 0$ Confirm given answer ln 2 correctly		B1 M1 A1	[3]
	(ii)	Integrate to obtain expression of form $pe^{x} + qe^{-2x}$ Obtain correct $e^{x} - 2e^{-2x}$ Apply both limits correctly Confirm given answer $\frac{5}{2}$		M1 A1 M1 d A1	epM [4]

Pa	ge 5	Mark Scheme	9709_s Syllabus	Pape	<u>s 2</u> 2 er
T u	900	Cambridge International AS Level – May/June 2015	9709	22	51
-		Draw mass privable skatch of $w = 16 - w^4$		B1	
5	(i)	Draw recognisable sketch of $y = 16 - x^4$			
		Draw recognisable sketch of $y = 3x $		B1	
		Indicate in some way the two points of intersection		B1 d	ервв [3]
((ii)	Use iterative process correctly at least once Obtain final answer 1.804		M1	
		Show sufficient iterations to justify answer or show sign change in the		A1	
		interval (1.8035, 1.8045)		A1	[3]
(i	iii)	State (1.804, 5.412)		B1	
		State $(-1.804, 5.412)$, following their first point		B1√^	[2]
6	(i)	Solve three-term quadratic equation for $\sin x$		M1	
		Obtain at least $\sin x = -\frac{1}{2}$ and no errors seen		A1	
		Obtain $x = \frac{7}{6}\pi$		A1	[3]
((ii)	State $\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$		B1	
		Obtain given $5 + 8\sin x - 2\cos 2x$ with necessary detail seen		B1	
		Integrate to obtain expression of form $ax + b\cos x + c\sin 2x$		M1	
		Obtain correct $5x - 8\cos x - \sin 2x$ Apply limits 0 and their <i>x</i> -value correctly		A1 M1 d	enM
		Obtain $\frac{35}{6}\pi + \frac{7}{2}\sqrt{3} + 8$ or exact equivalent		A1	[6]
7	(a)	Differentiate $4 \ln y$ to obtain $\frac{4}{y} \times \frac{dy}{dx}$		B1	
		y ux			
		Differentiate $6xy$ to obtain $6y + 6x \frac{dy}{dx}$		B1	
		Substitute 1 and 1 and solve for $\frac{dy}{dx}$		M1	
		ur ur		A 1	Г <i>4</i> Э
		Obtain $-\frac{9}{10}$ or equivalent		A1	[4]
	(b)	Obtain $\frac{dx}{dt} = -10t^{-2} - 1$		B1	
		Obtain derivative of form $k(2t-1)^{-\frac{1}{2}}$ for $\frac{dy}{dt}$		M1	
		Obtain correct $(2t-1)^{-\frac{1}{2}}$		A1	
		Identify value of t as 5		B1	
		Obtain expression for $\frac{dy}{dx}$ correctly, with numerical value of t substituted		M1	
		Obtain $-\frac{5}{21}$ or exact equivalent		A1	[6]