Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - May/June 2015	9709	21

1 (i) State or imply equation $(3 x+4)^{2}=(3 x-11)^{2}$ or $3 x+4=-(3 x-11)$ B1
Attempt solution of 'quadratic' equation or linear equation M1
Obtain $x=\frac{7}{6}$ or equivalent (and no other solutions) A1
(ii) Use logarithms to solve equation of form $2^{y}=$ their answer to (i) (must be + ve) M1Obtain 0.222 (and no other solutions)A1
2 State or imply that $\ln y=\ln A+p(x-1)$ B1
Equate gradient to p or obtain two equations for $\ln A$ and p M1
Obtain $p=0.44$ A1
Substitute values correctly, to find value of $\ln A$ DM1
Obtain $A=3.2$ A1
Alternative:
Obtain an equation either $\mathrm{e}^{1.6}=A \mathrm{e}^{p}$ or $\mathrm{e}^{2.92}=A \mathrm{e}^{4 p}$ M1
Obtain both equations correctly A1
Solve to obtain $p=0.44$ A1
Substitute value correctly to find A DM1
Obtain $A=3.2$ A1
3 Differentiate to obtain form $p \cos x+q \sin 2 x$ or equivalent M1
Obtain correct $6 \cos x+4 \sin 2 x$ or equivalent A1
Substitute $\frac{1}{6} \pi$ to obtain derivative equal to $5 \sqrt{3}$ or 8.66 A1
Form equation of tangent (not normal) using numerical value of gradient obtained by differentiation M1
Obtain $y=8.66 x-2.53$ cao A1[5]
B1
4 (i) Substitute $x=-2$ in $\mathrm{f}(x)$ and equate to zero to obtain $-8+4 a+b=0$ or equiv
M1
Substitute $x=-1$ in $g(x)$ and equate to -18 A1
Solve a pair of linear equations for a or b DM1
Obtain $a=5, \quad b=-12$ A1[5]
(ii) Simplify $\mathrm{g}(x)-\mathrm{f}(x)$ to obtain form $k x^{2}+c$ where $k<0$ M1
Obtain $-17 x^{2}+7$ and state 7 , following their value of cA1 $\sqrt{ }$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - May/June 2015	9709	21

5 (i) Obtain integral of form $k \mathrm{e}^{\frac{1}{2} x}+m x$
Obtain correct $6 \mathrm{e}^{\frac{1}{2} x}+x$
Apply limits and obtain correct $6 \mathrm{e}^{\frac{1}{2} a}+a-6$ A1
Equate to 10 and introduce natural logarithm correctly DM1
Obtain given answer $a=2 \ln \left(\frac{16-a}{6}\right)$ correctly
(ii) Use the iterative formula correctly at least once

Obtain final answer 1.732
Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in interval $(1.7315,1.7325)$

6 (i) State or imply $\operatorname{cosec} 2 \theta=\frac{1}{\sin 2 \theta}$
Express left-hand side in terms of $\sin \theta$ and $\cos \theta$
Obtain given answer $\sec ^{2} \theta$ correctly A1
(ii) (a) State or imply $\cos \theta=\frac{1}{\sqrt{5}}$ or $\tan \theta=2$ at least

Obtain 1.11 or awrt 1.11, allow $0.353 \pi \quad$ B1
Obtain 2.03 or awrt 2.03, allow 0.648π and no other values between 0 and $\pi \quad$ B1
(b) State integrand as $\sec ^{2} 2 x \quad$ B1

Integrate to obtain expression of form $k \tan m x \quad$ M1
Obtain correct $\frac{1}{2} \tan 2 x \quad$ A1
Obtain $\frac{1}{2} \sqrt{3}$ or exact equivalent A1

7 (i) Obtain $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{3} B1

Obtain $4 y+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $4 x y$
Equate derivative of left-hand side to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$, must be from implicit differentiation
Confirm given answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 y}{3 y^{2}+4 x}$ correctly A1
(ii) State or imply $y=0 \quad$ B1

Substitute in equation of curve and show contradiction B1
(iii) State or imply $3 y^{2}+4 x=0$

Eliminate one variable from equation of curve using $3 y^{2}+4 x=0 \quad$ M1
Obtain $y=-2$
Obtain $x=-3$ A1

