Dec	<u> </u>	Mayle Cohomo	9709 s	<u>15 m</u>	s_2
rag	e 4	Cambridge International AS Level – Mav/June 2015	9709	Pap 21	er
1 (i) S	State or imply equation $(3x+4)^2 = (3x-11)^2$ or $3x+4 = -(3x-11)$		B1	
	1	Attempt solution of 'quadratic' equation or linear equation		M1	
	(Obtain $x = \frac{7}{6}$ or equivalent (and no other solutions)		A1	[3]
(i	ii) U	Use logarithms to solve equation of form 2^y = their answer to (i) (must be + v	re)	M1	
	(Obtain 0.222 (and no other solutions)		Al	[2]
2 S	tate	or imply that $\ln y = \ln A + p(x-1)$		B1	
E	Iqua	te gradient to p or obtain two equations for $\ln A$ and p		M1	
C	Obtai	n $p = 0.44$		A1	
S	ubst btoi	itute values correctly, to find value of $\ln A$			[5]
C	Jotai	A = 3.2		AI	[3]
A	Alter	native: $1.6 1.8 2.92 1.4 4$		MI	
	Jotai Jotai	n an equation either $e^{AB} = Ae^{F}$ or $e^{AB} = Ae^{F}$			
S	olve	to obtain $p = 0.44$		Al	
S	ubst	itute value correctly to find A		DM1	
C	Obtai	n $A = 3.2$		A1	[5]
3 E	Diffe	rentiate to obtain form $p\cos x + q\sin 2x$ or equivalent		M1	
C	Obtai	n correct $6\cos x + 4\sin 2x$ or equivalent		A1	
S	ubst	itute $\frac{1}{6}\pi$ to obtain derivative equal to $5\sqrt{3}$ or 8.66		A1	
F	orm	equation of tangent (not normal) using numerical value of gradient			
0	btaiı	ned by differentiation		M1	
C	Obtai	n $y = 8.66x - 2.53$ cao		A1	[5]
4 (i) S	Substitute $x = -2$ in $f(x)$ and equate to zero to obtain $-8 + 4a + b = 0$ or equiv	7	B1	
	S	Substitute $x = -1$ in $g(x)$ and equate to -18		M1	
	(Dbtain -1 + b - a = -18 or equivalent		A1	
		Solve a pair of linear equations for a or b		DM1	r <i>~</i> 7
	(Dotain $a = 5, b = -12$		AI	[5]
(i	ii) S	Simplify $g(x) - f(x)$ to obtain form $kx^2 + c$ where $k < 0$		M1	
	(Obtain $-17x^2 + 7$ and state 7, following their value of c		A1√	[2]

			9709_	<u>s15 m</u>	<u>s_</u> 21
P	age 5	Mark Scheme	Syllabus	Pap	er
		Cambridge International AS Level – May/June 2015	9709	21	
		1			
5	(i)	Obtain integral of form $ke^{\frac{1}{2}x} + mx$		M1	
		Obtain correct $6e^{\frac{1}{2}x} + x$		A1	
		Apply limits and obtain correct $6e^{\frac{1}{2}a} + a - 6$		A 1	
		Equate to 10 and introduce natural logarithm correctly		DM1	
		Obtain given answer $a = 2\ln(\frac{16-a}{a})$ correctly		A 1	[5]
		(6)			[9]
	(ii)	Use the iterative formula correctly at least once		M1	
	(11)	Obtain final answer 1.732		A1	
		Show sufficient iterations to justify accuracy to 3 d.p. or show sign change			
		in interval (1.7315, 1.7325)		A1	[3]
		1			
6	(i)	State or imply $\csc 2\theta = \frac{1}{\sin 2\theta}$		B1	
		Express left-hand side in terms of $\sin \theta$ and $\cos \theta$		M1	
		Obtain given answer $\sec^2 \theta$ correctly		A 1	[3]
		obuin given answer see o concerty		211	[2]
		(a) State or imply $\cos \theta = \frac{1}{2}$ or $\tan \theta = 2$ at least		D1	
	(11)	(a) State of imply $\cos\theta = \frac{1}{\sqrt{5}}$ of $\tan\theta = 2$ at least		DI	
		Obtain 1.11 or awrt 1.11, allow 0.353π		B1	
		Obtain 2.03 or awrt 2.03 , allow 0.648π and no other values between 0 ar	nd π	B1	[3]
		2.			
		(b) State integrand as $\sec^2 2x$		B1 M1	
		Integrate to obtain expression of form $k \tan mx$			
		Obtain correct $\frac{1}{2} \tan 2x$		AI	
		Obtain $\frac{1}{2}\sqrt{3}$ or exact equivalent		A1	[4]
		4			
7	(i)	Obtain $3y^2 \frac{dy}{dx}$ as derivative of y^3		B1	
		dx dy			
		Obtain $4y + 4x \frac{dy}{dx}$ as derivative of $4xy$		B1	
		dy			
		Equate derivative of left-hand side to zero and solve for $\frac{dy}{dx}$, must be from			
		implicit differentiation		M1	
		dy 4y		A 1	Г <i>4</i> Т
		Confirm given answer $\frac{d}{dx} = -\frac{1}{3y^2 + 4x}$ correctly		AI	[4]
		·			
	(ii)	State or imply $y = 0$		B1	
		Substitute in equation of curve and show contradiction		B1	[2]
	(iii)	State or imply $3y^2 + 4x = 0$		B1	
		Eliminate one variable from equation of curve using $3y^2 + 4x = 0$		M1	
		Obtain $y = -2$		A1	
		Obtain $x = -3$		A1	[4]