Page 4	Mark Scheme	Syllabus	Paper \bar{r}
	Cambridge International AS/A Level - May/June 2015	$\mathbf{9 7 0 9}$	$\mathbf{1 2}$

1	$\begin{aligned} & \mathrm{f}^{\prime}(x)=5-2 x^{2} \text { and }(3,5) \\ & \mathrm{f}(x)=5 x-\frac{2 x^{3}}{3}(+c) \\ & \operatorname{Uses}(3,5) \\ & \rightarrow c=8 \end{aligned}$	B1 M1 A1 [3]	For integral Uses the point in an integral co
2	Radius of semicircle $=\frac{1}{2} A B=r \sin \theta$ Area of semicircle $=\frac{1}{2} \pi r^{2} \sin ^{2} \theta=A_{1}$ Shaded area $=$ semicircle - segment $=A_{1}-\frac{1}{2} r^{2} 2 \theta+\frac{1}{2} r^{2} \sin 2 \theta$	B1 B1 § B1B1 [4]	aef Uses $\frac{1}{2} \pi r^{2}$ with $r=\mathrm{f}(\theta)$ B1 (-sector), B1 for + (triangle)
3 (i) (ii)	$(2-x)^{6}$ Coeff of x^{2} is 240 Coeff of x^{3} is $-20 \times 8=-160$ $(3 x+1)(2-x)^{6}$ Product needs exactly 2 terms $\rightarrow 720-160=560$	B1 B2,1 [3] M1 A1 $\hat{}$ [2]	co B1 for +160 $3 \times$ their $240+$ their -160 \checkmark for candidate's answers.
4	$\begin{aligned} & u=2 x(y-x) \text { and } x+3 y=12, \\ & u=2 x\left(\frac{12-x}{3}-x\right) \\ & =8 x-\frac{8 x^{2}}{3} \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=8-\frac{16 x}{3} \\ & =0 \text { when } x=1 \frac{1}{2} \\ & \rightarrow\left(y=3 \frac{1}{2}\right) \\ & \rightarrow u=6 \end{aligned}$	M1 A1 M1 A1 A1 [5]	Expresses u in terms of x Differentiate candidate's quadratic, sets to $0+$ attempt to find x, or other valid method Complete method that leads to u Co
5 (i) (ii)	$\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta} .$ Divides top and bottom by $\cos \theta$ $\begin{aligned} & \rightarrow \quad \frac{t-1}{t+1} \\ & \frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{1}{6} \tan \theta \\ & \rightarrow \frac{t-1}{t+1}=\frac{t}{6} \\ & \rightarrow t^{2}-5 t+6=0 \\ & \rightarrow t=2 \text { or } t=3 \\ & \rightarrow \theta=63.4^{\circ} \text { or } 71.6^{\circ} \end{aligned}$	B1 [1] B1 M1 A1 A1 [4]	Answer given. Using the identity. Forms a 3 term quadratic with terms all on same side. co co

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	$\mathbf{9 7 0 9}$	$\mathbf{1 2}$

6 (i) (ii) (iii)	$\begin{aligned} & h=60(1-\cos k t) \\ & \text { Max } h \text { when } \cos =-1 \rightarrow 120 \\ & h=0 \text { and } t=30 \text {, or } h=120 \text { and } t=15 \\ & \rightarrow \cos 30 k=1 \text { or } \cos 15 k=-1 \\ & \rightarrow 30 k=2 \pi \quad \text { or } 15 k=\pi \\ & \rightarrow k=\frac{2 \pi}{30}=\frac{\pi}{15} \\ & 90=60(1-\cos k t) \\ & \rightarrow \cos k t=\frac{-30}{60}=-0.5 \\ & \rightarrow k t=\frac{2 \pi}{3} \text { or } \rightarrow k t=\frac{4 \pi}{3} \\ & \rightarrow \text { Either } t=10 \text { or } 20 \text { or both } \\ & \rightarrow t=10 \text { minutes } \end{aligned}$	A1 [2] B1 B1 B1 [3]	Co Substituting a correct pair of values into the equation. co ag co - but there must be evidence of correct subtraction.
7 (i) (ii)	$\begin{aligned} & A(4,6), B(10,2) . \\ & M=(7,4) \\ & m \text { of } A B=-\frac{2}{3} \\ & m \text { of perpendicular }=\frac{3}{2} \\ & \rightarrow y-4=\frac{3}{2}(x-7) \end{aligned}$ Eqn of line parallel to $A B$ through $(3,11)$ $\rightarrow y-11=-\frac{2}{3}(x-3)$ Sim eqns $\rightarrow C(9,7)$	M1 A1 [4] M1 DM1A1 [3]	co co Use of $m_{1} m_{2}=-1 \&$ their midpoint in the equation of a line. co Needs to use m of $A B$ Must be using their correct lines. Co
8 (a) (b) (i)	1 st, 2 nd, nth are 56,53 and -22 $\begin{aligned} & a=56, d=-3 \\ & -22=56+(n-1)(-3) \\ & \rightarrow n=27 \\ & S_{27}=\frac{27}{2}(112+26(-3)) \\ & \rightarrow 459 \end{aligned}$ $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \text { are } 2 k+6,2 k \text { and } k+2$ Either $\frac{2 k}{2 k+6}=\frac{k+2}{2 k}$ or uses a, r and eliminates $\rightarrow 2 k^{2}-10 k-12=0$ $\rightarrow k=6$		Uses correct u_{n} formula. co Needs positive integer n Co Correct method for equation in k. Forms quad. or cubic equation with no brackets or fractions. Co

(ii)	$\begin{aligned} & S_{\infty}=\frac{a}{1-r} \text { with } r=\frac{2 k}{2 k+6} \text { or } \frac{k+2}{2 k}\left(=\frac{2}{3}\right) \\ & \rightarrow 54 \end{aligned}$	M1 A1 [2]	Needs attempt at a and r and S_{∞} Co
	$\overrightarrow{O A}=2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k}$ and $\overrightarrow{O B}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$		
	$\overrightarrow{O A} \cdot \overrightarrow{O B}=6+4+16=26$	M1	Must be numerical at some stage
	$\|\overrightarrow{O A}\|=\sqrt{36},\|\overrightarrow{O B}\|=\sqrt{26}$	M1	Product of 2 moduli
	$\operatorname{Cos} A O B=\frac{26}{6 \sqrt{26}}$	M1	All linked correctly
	$\rightarrow 31.8^{\circ}$	A1 [4]	
	$\overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\left(\begin{array}{c} 1 \\ -3 \\ 0 \end{array}\right)$	B1	
	$\overrightarrow{O C}=\left(\begin{array}{l} 2 \\ 4 \\ 4 \end{array}\right)+2 \overrightarrow{A B} \text { or }\left(\begin{array}{l} 3 \\ 1 \\ 4 \end{array}\right)+\overrightarrow{A B}$	M1	Correct link
	$\overrightarrow{O C}=\left(\begin{array}{c} 4 \\ -2 \\ 4 \end{array}\right)$		
	Unit vector \div modulus $\rightarrow \frac{1}{6}\left(\begin{array}{c}4 \\ -2 \\ 4\end{array}\right)$	M1 A1 [4]	\div by modulus. co
(iii)	$\|\overrightarrow{O C}\|=6,\|\overrightarrow{O A}\|=6$	B1 [1]	co

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	12

