Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	11

1 (i) (ii) (iii)	θ is obtuse, $\sin \theta=k$ $\cos \theta=-\sqrt{ }\left(1-k^{2}\right)$ $\tan \theta=\frac{\sin \theta}{\cos \theta}$ used $\rightarrow \tan \theta=-\frac{k}{\sqrt{\left(1-k^{2}\right)}}$ aef $\sin (\theta+\pi)=-k$	[1]	cao Used, attempt at cosine seen in (i) Ft for their cosine as a function of k only, from part (i) cao
2 (i) (ii)	$\begin{aligned} & y=2 x^{2}, X(-2,0) \text { and } P(p, 0) \\ & A=\frac{1}{2} \times(2+p) \times 2 p^{2}\left(=2 p^{2}+p^{3}\right) \\ & \frac{\mathrm{d} A}{\mathrm{~d} p}=4 p+3 p^{2} \\ & \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} p} \times \frac{\mathrm{d} p}{\mathrm{~d} t}=0.02 \times 20=0.4 \\ & \text { or } \frac{\mathrm{d} A}{\mathrm{~d} t}=4 p \frac{\mathrm{~d} p}{\mathrm{~d} t}+3 p^{2} \frac{\mathrm{~d} p}{\mathrm{~d} t} \end{aligned}$	M1 A1 [2] B1 M1 A1 [3]	Attempt at base and height in terms of p and use of $\frac{b h}{2}$ cao any correct method, cao
3 (i) (a) (b) (ii)	$\begin{aligned} & (1-x)^{2}(1+2 x)^{6} \\ & (1-x)^{6}=1-6 x+15 x^{2} \\ & (1+2 x)^{6}=1+12 x+60 x^{2} \end{aligned}$ Product of (a) and (b) with >1 term $\rightarrow 60-72+15=3$	[2] B2,1 [2] M1 DM1A1 [3]	-1 each error -1 each error SC B1 only, in each part, for all 3 correct descending powers SC only one penalty for omission of the ' 1 ' in each expansion Must be 2 or more products M1 exactly 3 products. cao, condone $3 x^{2}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	11

$\begin{array}{rrr}4 & \\ & \\ & \text { (i) }\end{array}$	$\overrightarrow{O A}=\left(\begin{array}{c} 3 \\ 0 \\ -4 \end{array}\right), \overrightarrow{O B}=\left(\begin{array}{c} 6 \\ -3 \\ 2 \end{array}\right), \overrightarrow{O C}=\left(\begin{array}{c} k \\ -2 k \\ 2 k-3 \end{array}\right)$ $O A \cdot O B=18-8=10$ Modulus of $O A=5$, of $O B=7$ Angle $A O B=\cos ^{-1}\left(\frac{10}{35}\right)$ aef $\rightarrow \frac{10}{35} \text { or } \frac{2}{7}$	M1 M1 A1 [3]	Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ All linked with modulus cao, (if angle given, no penalty), correct angle implies correct cosine
(ii)	$\begin{aligned} & \overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\left(\begin{array}{c} 3 \\ -3 \\ 6 \end{array}\right) \\ & k^{2}+4 k^{2}+(2 k-3)^{2}=9+9+36 \\ & \rightarrow 9 k^{2}-12 k-45(=0) \\ & \rightarrow k=3 \quad \text { or } k=-\frac{5}{3} \end{aligned}$	B1 M1 DM1 A1 [4]	allow for $\mathbf{a}-\mathbf{b}$ Correct use of moduli using their AB obtains 3 term quadratic. cao
5 (i) (ii) (iii)	$\begin{aligned} & 24=r+r+r \theta \\ & \rightarrow \theta=\frac{24-2 r}{r} \\ & A=\frac{1}{2} r^{2} \theta=\frac{24 r}{2}-r^{2}=12 r-r^{2} . \text { aef, ag } \\ & (A=) 36-(r-6)^{2} \end{aligned}$ Greatest value of $A=36$ $(r=6) \rightarrow \theta=2$	M1A1 [3] B1 B1 [2] B1ヶ B1	(May not use θ) Attempt at $s=r \theta$ linked with 24 and r Uses A formula with θ as $\mathrm{f}(r)$. cao cao Ft on (ii). cao, may use calculus or the discriminant on $12 r-r^{2}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	11

6 (i) (ii)	$\begin{aligned} & y-2 t=-2(x-3 t)(y+2 x=8 t) \\ & \text { Set } x \text { to } 0 \rightarrow B(0,8 t) \\ & \text { Set } y \text { to } 0 \rightarrow A(4 t, 0) \\ & \rightarrow \text { Area }=16 t^{2} \\ & m=\frac{1}{2} \\ & \rightarrow y-2 t=\frac{1}{2}(x-3 t)(2 y=x+t) \end{aligned}$ Set y to $0 \rightarrow C(-t, 0)$ Midpoint of $C P$ is (t, t) This lies on the line $y=x$.	M1 M1 A1 [3] B1 M1 A1 A1 [4]	Unsimplified or equivalent forms Attempt at both A and B, then using cao cao Unsimplified or equivalent forms co correctly shown.
7 (a)	$a r^{2}=\frac{1}{3}, a r^{3}=\frac{2}{9}$ $\rightarrow r=\frac{2}{3}$ aef Substituting $\rightarrow a=\frac{3}{4}$ $\rightarrow S_{\infty}=\frac{\frac{3}{4}}{\frac{1}{3}}=2 \frac{1}{4}$ aef	M1 A1 M1 A1 [4]	Any valid method, seen or implied. Could be answers only. Both a and r Correct formula with $\|r\|<1$, cao
(b)	$\begin{aligned} & 4 a=a+4 d \rightarrow 3 a=4 d \\ & 360=S_{5}=\frac{5}{2}(2 a+4 d) \text { or } 12.5 a \\ & \rightarrow a=28.8^{\circ} \text { aef } \\ & \text { Largest }=a+4 d \text { or } 4 a=115.2^{\circ} \text { aef } \end{aligned}$	B1 M1 A1 B1 [4]	May be implied in $360=5 / 2(a+4 a)$ Correct S_{n} formula or sum of 5 terms cao, may be implied (may use degrees or radians)

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	11

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	11

$\begin{array}{ll}9 & \\ & \text { (i) }\end{array}$	$\begin{aligned} & y=x^{3}+p x^{2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}+2 p x \end{aligned}$ Sets to $0 \rightarrow x=0$ or $-\frac{2 p}{3}$ $\rightarrow(0,0) \text { or }\left(-\frac{2 p}{3}, \frac{4 p^{3}}{27}\right)$	B1 M1 A1 A1 [4]	cao Sets differential to 0 cao cao, first A1 for any correct turning point or any correct pair of x values. 2nd A1 for 2 complete TPs
(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x+2 p$	M1	Other methods include; clear demonstration of sign change of gradient, clear reference to the shape of the curve
	At $(0,0) \rightarrow 2 p+$ ve Minimum At $\left(-\frac{2 p}{3}, \frac{4 p^{3}}{27}\right) \rightarrow-2 p-$ ve Maximum	A1 A1 [3]	www
(iii)	$y=x^{3}+p x^{2}+p x \rightarrow 3 x^{2}+2 p x+p(=0)$	B1	
	$\begin{aligned} & \text { Uses } b^{2}-4 a c \\ & \rightarrow 4 p^{2}-12 p<0 \end{aligned}$	M1	Any correct use of discriminant
	$\rightarrow 0<p<3$ aef	A1	cao (condone \leqslant)

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	11

