Page 4		Mark Scheme				15 ms 11 Paper
raye 4		Cambridge International AS/A Level – May/June 2015			9709	11
·			1			
1		θ is obtuse, $\sin \theta = k$				
(i)		$\cos\theta = -\sqrt{(1-k^2)}$	B1 [1]	cao		
(ii)		$\tan \theta = \frac{\sin \theta}{\cos \theta} \text{ used}$	M1	Used, atter	npt at cosine	seen in (i)
		$\rightarrow \tan \theta = -\frac{k}{\sqrt{(1-k^2)}}$ aef	A1√ [^] [2]	Ft for their only, from	cosine as a fu part (i)	nction of <i>k</i>
(iii)		$\sin\left(\theta+\pi\right)=-k$	B1 [1]	cao		
2		$y = 2x^2$, $X(-2, 0)$ and $P(p, 0)$				
(i)		$A = \frac{1}{2} \times (2 + p) \times 2p^{2} (= 2p^{2} + p^{3})$	M1 A1 [2]	Attempt at of <i>p</i> and use	base and heig e of $\frac{bh}{2}$	ht in terms
(ii)		$\frac{\mathrm{d}A}{\mathrm{d}p} = 4p + 3p^2$	B1	cao		
		$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}p} \times \frac{\mathrm{d}p}{\mathrm{d}t} = 0.02 \times 20 = 0.4$	M1 A1	any correct	method, cao	
		or $\frac{dA}{dt} = 4p \frac{dp}{dt} + 3p^2 \frac{dp}{dt}$	[3]			
3		$(1-x)^2(1+2x)^6$.				
(i) (a	(a)	$(1-x)^6 = 1 - 6x + 15x^2$	B2,1 [2]	-1 each erro	or	
(1	b)	$(1+2x)^6 = 1 + 12x + 60x^2$	B2,1 [2]	-1 each erro SC B1 only correct desc SC only on of the '1' in	or y, in each part cending powe e penalty for a each expans	, for all 3 ers omission ion
(ii)		Product of (a) and (b) with >1 term $\rightarrow 60 - 72 + 15 = 3$	M1 DM1A1 [3]	Must be 2 c M1 exactly condone 3 <i>x</i>	or more products. $\frac{3}{2}$	icts cao,

Dama C	Maula Caleana		9709 s15 ms 11		
Page 5	age 5 Mark Scheme				
	Cambridge International AS/A Level –	way/June	2015 9709 11		
4	$\overrightarrow{OA} = \begin{pmatrix} 3\\0\\-4 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 6\\-3\\2 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} k\\-2k\\2k-3 \end{pmatrix}$				
(i)	$OA \cdot OB = 18 - 8 = 10$ Modulus of $OA = 5$, of $OB = 7$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$		
	Angle $AOB = \cos^{-1}\left(\frac{10}{35}\right)$ aef	M1	All linked with modulus cao, (if angle given, no penalty),		
	$\rightarrow \frac{10}{35} \text{ or } \frac{2}{7}$	A1 [3]	correct angle implies correct cosine		
(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 3 \\ -3 \\ 6 \end{pmatrix}$	B1	allow for $\mathbf{a} - \mathbf{b}$		
	$k^2 + 4k^2 + (2k - 3)^2 = 9 + 9 + 36$	M1	Correct use of moduli using their AB obtains 3 term quadratic. cao		
	$\rightarrow 9k^2 - 12k - 45(=0)$ $\rightarrow k=3 \text{ or } k = -\frac{5}{3}$	DM1 A1 [4]			
5 (i)	$24 = r + r + r\theta$ $\rightarrow \theta = \frac{24 - 2r}{r}$ $4 = \frac{1}{r} + 2\theta + 24r + 2\theta + 12\theta + 2\theta + 12\theta$	M1	(May not use θ) Attempt at $s = r\theta$ linked with 24 and r		
	$A = \frac{1}{2}r^{2}\theta = \frac{1}{2}r^{2} = 12r - r^{2}$. aet, ag	[3]	Uses A formula with θ as $f(r)$. cao		
(ii)	$(A=)36-(r-6)^2$	B1 B1 [2]	cao		
(iii)	Greatest value of $A = 36$	B1√	Ft on (ii).		
	$(r=6) \rightarrow \theta = 2$	B1 [2]	cao, may use calculus or the discriminant on $12r - r^2$		

·			<u>9709_s15_ms_1</u>
Page 6	Mark Scheme	Syllabus Paper	
	Cambridge International AS/A Level –	May/June	2015 9709 11
6 (i)	y-2t = -2(x-3t)(y+2x=8t)	M1	Unsimplified or equivalent forms
	Set x to $0 \rightarrow B(0, 8t)$ Set y to $0 \rightarrow A(4t, 0)$ \rightarrow Area = $16t^2$	M1 A1 [3]	Attempt at both <i>A</i> and <i>B</i> , then using cao
(ii)	$m = \frac{1}{2}$ $\rightarrow y - 2t = \frac{1}{2}(x - 3t)(2y = x + t)$ Set y to 0 $\rightarrow C(-t, 0)$ Midpoint of CP is (t, t)	B1 M1 A1	cao Unsimplified or equivalent forms co correctly shown.
	This lies on the line $y = x$.	A1 [4]	
7 (a)	$ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$		
	$\rightarrow r = \frac{2}{3}$ aef	M1	Any valid method, seen or implied. Could be answers only.
	Substituting $\rightarrow a = \frac{3}{4}$	A1	Both a and r
	$\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4}$ aef	M1 A1 [4]	Correct formula with $ r < 1$, cao
(b)	$4a = a + 4d \rightarrow 3a = 4d$	B1	May be implied in 360 = 5/2(a+4a)
	$360 = S_5 = \frac{5}{2}(2a+4d)$ or $12.5a$	M1	Correct S_n formula or sum of 5 terms
	$\rightarrow a = 28.8^{\circ}$ aef Largest = $a + 4d$ or $4a = 115.2^{\circ}$ aef	A1 B1 [4]	cao, may be implied (may use degrees or radians)

·	<u> </u>		
Page 7	Syllabus Paper		
	Cambridge International AS/A Level –	2015 9709 11	
		T	
8	f: $x \mapsto 5 + 3\cos\left(\frac{1}{2}x\right)$ for $0 \le x \le 2\pi$.		
(i)	$5 + 3\cos\left(\frac{1}{2}x\right) = 7$		(1) 2
	$\cos\left(\frac{1}{2}x\right) = \frac{2}{3}$	B1	Makes $\cos\left(\frac{-x}{2}\right) = \frac{-3}{3}$
	$\frac{1}{2}x = 0.84 x = 1.68 \text{ only, aef}$	M1A1 [3]	Looks up \cos^{-1} first, then $\times 2$
	(in given range)		
(ii)	8	B1 B1 [2]	<i>y</i> always +ve, <i>m</i> always –ve. from $(0, 8)$ to $(2\pi, 2)$ (may be implied)
	2 × 2π		
(iii)	No turning point on graph or 1:1	B1 [1]	cao, independent of graph in (ii)
(iv)	$y = 5 + 3\cos\left(\frac{1}{2}x\right)$	M1	Tries to make x subject.
	Order; $-5, \div 3, \cos^{-1}, \times 2$	M1	Correct order of operations
	$x = 2\cos^{-1}\left(\frac{x-5}{3}\right)$	A1 [3]	cao

		9709 s	<u>15 ms 1</u> 1		
Page 8	Mark Scheme				Paper
	Cambridge International AS/A Level – May/June 2015			9709	11
9	$y = x^3 + px^2$				
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2px$	B1	cao		
	Sets to $0 \rightarrow x = 0$ or $-\frac{2p}{3}$	M1	Sets differen	ntial to 0	
	$\rightarrow (0,0) \text{ or } \left(-\frac{2p}{3},\frac{4p^3}{27}\right)$	A1 A1 [4]	cao cao, first A1 for any correct turning point or any correct pair of x values. 2nd A1 for 2 complete TPc		correct ect pair of omplete
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x + 2p$	M1	Other methods include; clear demonstration of sign change of gradient, clear reference to the shape of the curve		
	At $(0, 0) \rightarrow 2p$ +ve Minimum	A1	WWW		
	At $\left(-\frac{2p}{3}, \frac{4p^3}{27}\right) \rightarrow -2p$ -ve Maximum	A1 [3]			
(iii)	$y = x^{3} + px^{2} + px \rightarrow 3x^{2} + 2px + p (= 0)$	B1			
	Uses $b^2 - 4ac$ $\rightarrow 4n^2 - 12n \le 0$	M1	Any correct	use of discri	minant
	$\rightarrow 0 aef$	A1 [3]	cao (condo	ne ≤)	

Page 9	e 9 Mark Scheme			
	Cambridge International AS/A Level -	2015 9709 11		
••				
10	$y = \frac{8}{\sqrt{3x+4}}$			
(i)	$\frac{dy}{dx} = \frac{-4}{(3x+4)^{\frac{3}{2}}} \times 3 \text{aef}$	B1 B1	Without the "×3" For "×3" even if 1st B mark lost.	
	$\rightarrow m_{(x=0)} = -\frac{3}{2}$ Perpendicular $m_{(x=0)} = \frac{2}{3}$	M1	Use of $m_1m_2 = -1$ after attempting to find $\frac{dy}{dx}_{(x=0)}$	
	Eqn of normal $y-4 = \frac{2}{3}(x-0)$	M1	Unsimplified line equation	
	Meets $x = 4$ at $B\left(4, \frac{20}{3}\right)$	A1 [5]	cao	
(ii)	$\int \frac{8}{\sqrt{(3x+4)}} \mathrm{d}x = \frac{8\sqrt{(3x+4)}}{\frac{1}{2}} \div 3$	B1 B1	Without "÷3". For "÷3"	
	Limits from 0 to 4 \rightarrow Area $P = \frac{32}{3}$ Area $Q = \text{Trapezium} - P$	M1 A1	Correct use of correct limits. cao	
	Area of Trapezium = $\frac{1}{2}\left(4 + \frac{20}{3}\right) \times 4 = \frac{64}{3}$	M1	Correct method for area of trapezium	
	\rightarrow Areas of <i>P</i> and <i>Q</i> are both $\frac{32}{3}$	A1 [6]	All correct.	