Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	73

1	$\mathrm{e}^{-4}(1+4)$ $=0.0916 \text { (3 s.f.) }$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 for $\mathrm{P}(0$ or 1$)$ using Poisson, any λ Expression of correct form correct λ (allow 1 end error) SR Use of $\operatorname{Bin}(100000,1 / 25000)$ scores M1 for $\mathrm{P}(0,1)$ allow one end error. A1 0.0916
2	$\begin{aligned} & \mathrm{ht}=\frac{1}{2} \quad \text { seen } \\ & \frac{1}{2} \times m \times\left(\frac{m}{4} \times{ }^{\prime \prime} \frac{1}{2} "\right)=\frac{1}{2} \end{aligned}$ N.B. B1 M1 must be consistent $m=\sqrt{ } 8 \text { or } 2 \sqrt{ } 2 \text { or } 2.83(3 \text { s.f. })$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\text { or } y=\frac{1}{8} x$ $\frac{1}{2} \times m \times\left(-\frac{1}{8} " m\right)=\frac{1}{2} \quad \text { or } \frac{m^{2}}{16}=\frac{1}{2} \quad \text { o.e. }$ Or Integrating linear function of form $y=k x$ with limits 0 and m or m and 4 and equated to 0.5
3	$\begin{aligned} & p=0.56 \\ & { }^{0.56} \pm z \times \sqrt{\frac{0.56 \times 0.44}{100}} \\ & z=2.17, \text { or } 2.169 \text { or } 2.171 \\ & 0.452 \text { to } 0.668 \text { (} 3 \text { s.f. }) \end{aligned}$	B1 M1 B1 A1	Used Equation of correct form condone just + ve or -ve Must be z Seen Must be an interval
4	$\bar{x}=1.65$ $\begin{aligned} & \operatorname{est}\left(\sigma^{2}\right)=\frac{100}{99}\left(\frac{276.25}{100}-1.65^{2}\right) \\ & =0.040404 \ldots=4 / 99 \end{aligned}$ $(\pm) \frac{1.65-1.6}{\sqrt{\frac{0.040404^{\prime \prime}}{100}}}$ $=(\pm)$ 2.487/2.488 accept 2.49 Or $0.0065 / 0.0064$ if area comparison done comp with 1.96 There is evidence that μ is not 1.6	B1 B1 M1 A1 M1	$\begin{array}{ll} \text { Without } \frac{100}{99}: & \frac{1.65-1.6}{\sqrt{\frac{0^{0.04 "}}{100}}} \text { B1 B0 M1 } \\ & =2.50 \quad \mathrm{~A} 1 \end{array}$ CV Method M1 must use 1.96 A1 for 1.639 or 1.6106 For valid comparison (z/z Signs consistent or area/area cv) Accept Reject H_{0} No contradictions

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	73

5 (i)	Longest lifetime	B1 [1]	Must be in context
(ii)	$\begin{aligned} & \int_{1}^{a} \frac{k}{x^{2}} \mathrm{~d} x=1 \\ & k\left[-\frac{1}{x}\right]_{1}^{a}=1 \\ & \left(k\left[-\frac{1}{a}+1\right]=1\right) \\ & k\left[\frac{-1+a}{a}\right]=1 \quad \text { or } k(-1+a)=a \\ & k=\frac{a}{a-1} \quad \mathbf{A G} \end{aligned}$	A1 A1 [3]	Int $\mathrm{f}(x)$ and equate to 1 . Ignore limits Correct integral and limits Must be convinced (AG)
(iii)	$\begin{aligned} & \frac{5}{3} \int_{1}^{2.5} \frac{1}{x} \mathrm{~d} x \text { or } k \int_{1}^{2.5} \frac{1}{x} \mathrm{~d} x \\ & =\frac{5}{3}[\ln x] \quad \text { or } k[\ln x] \\ & 1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Int $x \mathrm{f}(x)$. Ignore limits Correct integral and limits (Accept " k " or "their k ")
6 (i)	$\begin{aligned} & \mathrm{H}_{0}: p=0.2 \\ & \mathrm{H}_{1}: p<0.2 \\ & \mathrm{P}\left(0 \text { or } 15 \mathrm{~s} \text { in } 25 \mid \mathrm{H}_{0}\right) \\ & =0.0274 \text { (3 s.f.) } \end{aligned}$ Comp with 0.025 No evidence (at 2.5% level) to support claim	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ヶ [5] } \end{aligned}$	(Allow π) $0.8^{25}+25 \times 0.8^{24} \times 0.2$ Use of $B(25,1 / 5)$ and $\mathrm{P}(0)$ or $\mathrm{P}(1)$ or both - may be implied by "0.0274" Valid comparison No contradictions SR Use of Normal $\mathrm{N}(5,4)$ leading to $z=1.75$ or 0.0401 B1* $\mathrm{H}_{0} \mu=5 \mathrm{H}_{1} \mu<5$ B1. Comparison $1.75<1.96$ or $0.0401>0.025$ B1* dep
(ii)	Normal $\mu=200, \sigma^{2}=160 \text { or } \sigma=\sqrt{ } 160$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(iii)	Concluding that the machine produces the right proportion of 5 s , although it doesn't.	B1 [1]	Not concluding that the machine produces too few 5 s although it does. Must be in context o.e. No contradictions

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	73

7 (i)	Constant mean (or average) rate	B1 [1]	Constant mean per day (or week, etc.) o.e.
(ii)	$\begin{aligned} & \mathrm{e}^{-\frac{4}{7} \times \frac{4^{2}}{7}} 2 \text { or } \mathrm{e}^{-0.571} \times \frac{0.571^{2}}{2!} \\ & =0.0922 \text { or } 0.0921(3 \text { s.f. }) \end{aligned}$	M1 A1 [2]	Expression for $\mathrm{P}(2)$ allow any λ
(iii)	$\begin{aligned} & \lambda=\frac{40}{7} \text { or } 5.71 \ldots \\ & 1-\mathrm{e}^{-\frac{40}{7}}\left(1+\frac{40}{7}+\frac{\frac{40}{7}^{2}}{2!}+\frac{\frac{40}{}^{3}}{3!}\right) \\ & =0.821(3 \text { s.f. }) \end{aligned}$	$\begin{array}{\|ll} \text { B1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & {[3]} \end{array}$	Allow any λ allow one end error
(iv)	$\frac{24}{7}$ o.e. 3 s.f. or better seen $\begin{aligned} & \mathrm{e}^{-\frac{4}{7}} \times \mathrm{e}^{-\frac{24}{7} \times \frac{\frac{24^{5}}{7}}{5!}} \\ & =0.0723 \text { (3 s.f.) } \end{aligned}$	B1 M1 A1 [3]	M1 for $\mathrm{P}(0) \times \mathrm{P}(5)$ any consistent λ
8 (i)	$X+2.5 Y \sim \mathrm{~N}(127,44.25)$ $\begin{aligned} & (\pm) \frac{140-" 127 "}{\sqrt{" 44.25 "}} \\ & = \pm(1.954) \\ & 1-\Phi(" 1.954 \text { ") } \\ & =0.0254 / 0.0253 \text { (3 s.f.) } \end{aligned}$	B1 B1 M1 M1 A1	B1 for 127 Allow at early stage $(57+2.5 \times 28)$ B1 for 44.25 or 6.65 Allow at early stage $\left(13+2.5^{2} \times 5\right)$ May be implied by next line For standardising For area consistent with their working
(ii)	$X-Y \sim \mathrm{~N}(29,18)$ $\begin{aligned} & \frac{20-" 29 "}{\sqrt{" 18 "}} \\ & 1-\Phi("-2.121 ")=\Phi(" 2.121 ") \\ & =0.983 \text { (3 s.f.) } \end{aligned}$	$\begin{array}{ll}\text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } & \\ \text { A1 } & \\ \text { [5] }\end{array}$	B1 for 29 Give at early stage (57-28) B1 for 18 Give at early stage $(13+5)$ May be implied by next line For Standardising For area consistent with their working

