						<u>9709_s14_ms_73</u>		
Page	e 4 Mark Scheme					Syllabus	Paper	
		GCE A LEVEL – I	vlay/J	une 2	2014	9709	73	
1	e ⁻⁴ (1 +	4)	M1 M1		M1 for P(0 or 1) Expression of co (allow 1 end error) using Poisson, prrect form corre or)	any λ ct λ	
	= 0.091	16 (3 s.f.)	A1	[3]	SR Use of Bin(1 P(0,1) allow one	.00000, 1/25000) e end error. A1 0	scores M1 for 0916	
2	$ht = \frac{1}{2}$	seen	B1		or $y = \frac{1}{8}x$			
	$\frac{1}{2} \times m$	$\times \left(\frac{m}{4} \times "\frac{1}{2}"\right) = \frac{1}{2}$	M1		$\frac{1}{2} \times m \times ("\frac{1}{8}"m)$	$=\frac{1}{2}$ or $\frac{m^2}{16}$	$=\frac{1}{2}$ o.e.	
	N.B. B	1 M1 must be consistent			Or Integrating li with limits 0 and	near function of $d m$ or m and 4 and $d m$	form $y = kx$ and equated to	
	$m = \sqrt{8}$	or 2√2 or 2.83 (3 s.f.)	A1	[3]	0.5			
3	<i>p</i> = 0.5	6	B1		Used			
	'0.56' :	$\pm z \times \sqrt{\frac{0.56 \times 0.44}{100}}$	M1		Equation of corr Must be <i>z</i>	rect form condon	ejust+veor-ve	
	z = 2.1	7, or 2.169 or 2.171	B1					
	0.452 t	o 0.668 (3 s.f.)	A1	[4]	Seen Must be an inter	rval		
4	$\overline{x} = 1.$	65	B1					
	$est(\sigma^2)$	$=\frac{100}{99}\left(\frac{276.25}{100}-1.65^2\right)$	B1					
	= 0.040	0404 = 4/99						
	$(\pm)\frac{1}{\sqrt{-1}}$	<u>65–1.6</u> <u>).040404''</u> 100	M1		Without $\frac{100}{99}$:	$\frac{1.65 - 1}{\sqrt{\frac{"0.04}{100}}}$. <u>6</u> B1 B0 M1	
	$= (\pm) 2$ 0.0065 done	.487/2.488 accept 2.49 Or /0.0064 if area comparison	A1			= 2.50	A1	
					CV Method M1 1.6106	must use 1.96 A	1 for 1.639 or	
	comp v	vith 1.96	M1		For valid compa area/area cv)	rison (z/z Signs o	consistent or	
	There i	s evidence that μ is not 1.6	A1√^	[6]	Accept Reject H	l ₀ No contradicti	ons	

9709	s14	ms	73
		_	_

	Page 5		Mark Sc	Syllabus	Paper			
			GCE A LEVEL – May/June 2014				9709	73
5	(i)	Longest lifetime		B1	[1]	Must be in context		
	(ii)	$\int_{1}^{a} \frac{k}{x^2} dx = 1$		M1		Int $f(x)$ and equate to 1. Ignore limits		
		$k\left[-\frac{1}{x}\right]\frac{a}{1} = 1$		A1		Correct integral and limits		
		$\left(k\left[-\frac{1}{a}+1\right]=1\right)$						
		$k\left[\frac{-1+a}{a}\right] = 1$ or $k(-1+a) = a$						
		$k = \frac{a}{a}$	$\frac{d}{-1}$ AG	A1	[3]	Must be convir	nced (AG)	
	(iii)	$\frac{5}{3} \int_{1}^{2.5}$	$\frac{1}{x}$ dx or $k \int_{1}^{2.5} \frac{1}{x}$ dx	M1		Int $xf(x)$. Ignor	e limits	
		$=\frac{5}{3}$ [1]	$nx] \frac{2.5}{1}$ or $k[lnx] \frac{2.5}{1}$	A1		Correct integra (Accept "k" or	l and limits "their <i>k</i> ")	
		$=\frac{5}{3}\ln^2$	2.5 or 1.53 (3 s.f.)	A1	[3]			
6	(i)	H ₀ : <i>p</i> = H ₁ : <i>p</i> <	= 0.2 < 0.2	B1		(Allow π)		
		P(0 or 1 5s in 25 H ₀)		M1		$0.8^{25} + 25 \times 0.8^{24} \times 0.2$ Use of B(25,1/5) at P(0) or P(1) or both – may be implied by "0.0274"		(25,1/5) and plied by
		= 0.0274 (3 s.f.)		A1				
		Comp	with 0.025	M1		Valid comparis	son	
		No evi suppor	dence (at 2.5% level) to t claim	A1√	[5]	No contradiction SR Use of Nor $0.0401 \text{ B1* } H_0$ 1.75 < 1.96 or 0	ons mal N(5,4) leading $\mu = 5 H_1 \mu < 5 B$ 0.0401 > 0.025 B1	g to <i>z</i> = 1.75 or 1. Comparison 1* dep
	(ii)	Norma	.1	B1				
		$\mu = 200$	0, $\sigma^2 = 160 \text{ or } \sigma = \sqrt{160}$	B1	[2]			
	(iii)	Conclu produc althoug	uding that the machine tes the right proportion of 5s, gh it doesn't.	B1	[1]	Not concluding few 5s althoug o.e. No contrac	g that the machine h it does. Must be lictions	produces too in context

			<u>9709_s14_ms_7</u>			
Page 6		Mark Sc	Syllabus Paper			
		GCE A LEVEL – I	GCE A LEVEL – May/June 2014			
7 (i)	Con	stant mean (or average) rate	B1	[1]	Constant mean per day (or week, etc.) o.e	
(ii)	$e^{-\frac{4}{7}}$	$\times \frac{\frac{4}{7}^2}{2!}$ or $e^{-0.571} \times \frac{0.571^2}{2!}$	M1		Expression for P(2) allow any λ	
	= 0.	0922 or 0.0921 (3 s.f.)	A1	[2]		
(iii)	$\lambda =$	$\frac{40}{7}$ or 5.71	B1			
	1 –	$e^{-\frac{40}{7}} \left(1 + \frac{40}{7} + \frac{\frac{40}{7}^2}{2!} + \frac{\frac{40}{7}^3}{3!} \right)$	M1		Allow any λ allow one end error	
	= 0.	821 (3 s.f.)	A1	[3]		
(iv)	$\frac{24}{7}$	o.e. 3 s.f. or better seen	B1			
	$e^{-\frac{4}{7}}$	$\times e^{-\frac{24}{7}} \times \frac{\frac{24}{7}^{5}}{5!}$	M1		M1 for P(0) × P(5) any consistent λ	
	= 0.	0723 (3 s.f.)	A1	[3]		
8 (i)	X+	2.5 <i>Y</i> ~ N(127, 44.25)	B1 B1		B1 for 127 Allow at early stage $(57 + 2.5 \times 28)$ B1 for 44.25 or 6.65 Allow at early stage $(13 + 2.5^2 \times 5)$ May be implied by next line	
	(±)-	$\frac{40 - "127"}{\sqrt{"44.25"}}$	M1		For standardising	
	= ±	(1.954)	M1		For area consistent with their working	
	1 -	Ф("1.954")				
	= 0.	0254/0.0253 (3 s.f.)	A1	[5]		
(ii)	X-	<i>Y</i> ∼ N(29, 18)	B1 B1		B1 for 29 Give at early stage $(57 - 28)$ B1 for 18 Give at early stage $(13 + 5)$ May be implied by next line	
	$\frac{20}{}$	<u>-"29"</u> (= -2.121)	M1		For Standardising	
	1 -	$\Phi(\text{``-2.121''}) = \Phi(\text{``2.121''})$	M1		For area consistent with their working	
	= 0.	983 (3 s.f.)	A1	[5]		