Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\begin{aligned} & \frac{\Sigma x}{8}=\frac{2006}{8}=250.75 \text { or } 251 \text { (3 s.f.) } \\ & \left(\Sigma x^{2}=503274\right) \\ & \frac{8}{7}\left(\frac{" 503274 "}{8}-" 250.75^{\prime 2}\right) \\ & =38.5 \text { o.e. }\left(\text { accept } 6.204^{2}\right) \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$	Any equivalent form For use of formula of correct form cao (as final answer)
2	$\begin{aligned} & (X+Y-Z) \sim \mathrm{N}(8, \ldots) \\ & \mu=8(\text { or }-8) \\ & \operatorname{Var}(X+Y-Z)=2^{2}+1.5^{2}+1.8^{2} \\ & (=9.49) \\ & \frac{0-8}{\sqrt{9.49^{\prime}}} \\ & \\ & \Phi\left({ }^{`}-2.597^{\prime}\right)=1-\Phi\left({ }^{(} 2.597^{\prime}\right) \\ & =0.0047 \end{aligned}$		seen or implied - award at early stage For standardising (accept sd/var mixes, but variance must be a combination of at least 2 of $X, Y, Z)$ For area consistent with their working
3	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }(\text { or } \mu \text { or } \lambda)=50(\text { or } 5) \\ & \left.\mathrm{H}_{1}: \text { Pop mean }(\text { or } \mu \text { or } \lambda) \neq 50 \text { (or } 5\right) \\ & \frac{60.5-50}{\sqrt{50}}(\pm) \\ & =(\pm) 1.485 \text { OR } 0.0687 \text { OR C.V } \\ & 1.485<1.645 \text { or } 0.0687>0.05 \end{aligned}$ No evidence that mean changed		Not just "mean" For standardising with $\mathrm{N}(50,50)$ or $\mathrm{N}(5,5 / \sqrt{ } 10)$ Allow M1 with wrong or no continuity correction OR no $\sqrt{ }$ (accept c.v method M1, A1 for 61.63 or 48.868) For valid comparison ($z \mathrm{~s}$ or areas or cv) (S.R For cv comparison 61.63 only award final A1 if cc used) or if $\mathrm{H}_{1}: \lambda>50,1.485<1.96$ No evid mean changed (i.e. if one-tail test, max B0 M1 A1 M1 A0)
Page 5	Mark Scheme	Syllabus	Paper
:---:	:---:	:---:	:---:
	GCE A LEVEL - May/June 2014	9709	$\mathbf{7 2}$
4 (i)	$\begin{aligned} & \lambda=4.5 \\ & 1-\mathrm{e}^{-4.5}\left(1+4.5+\frac{4.5^{2}}{2}\right) \\ & =0.826(3 \text { s.f. }) \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$	seen any λ. Allow one end error
:---:	:---:	:---:	:---:
(ii)	$\begin{aligned} & \mathrm{e}^{-\lambda}=0.523 \\ & (-\lambda=\ln 0.523) \\ & \lambda=0.648 \text { (3 s.f.) } \end{aligned}$	B1 [2]	
(iii)	$\left\{\begin{array}{l} \mathrm{e}^{-\mu} \times \frac{\mu^{3}}{3!}=24 \times \mathrm{e}^{-\mu} \times \mu \\ \frac{\mu^{2}}{6}=24 \\ \mu=12 \end{array}\right.$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$	For a simplified expression in μ^{2} with $\mathrm{e}^{-\mu}$ and μ cancelled and no factorials.
5 (i)	$\begin{aligned} & p=\frac{184}{400} \text { or } 0.46 \\ & z=1.96 \\ & " 0.46 " \pm z \times \sqrt{\frac{" 0.46 "(1-" 0.46 ")}{400}} \\ & =0.411 \text { to } 0.509 \end{aligned}$	B1 B1 M1 A1 	Used Seen Using expression of correct form Must be an interval
(ii)	$0.5 \text { within CI }$ Claim not supported or not justified	B1^ [1]	Both needed. No contradictions. ft their (i)
(iii)	$\begin{aligned} & z \times \sqrt{\frac{" 0.46 "(1-" 0.46 ")}{400}}=0.05 \\ & z=2.006 \\ & \Phi\left({ }^{‘} 2.006^{\prime}\right)=0.9775 \\ & \alpha=‘ 0.9775 \prime-\left(1-~^{\prime} 0.9775^{\prime}\right) \\ & =95.5 \% \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } \\ \text { M1 } & \\ \text { A1 } & {[4]}\end{array}$	Allow M1 for $z \times \sqrt{\frac{" 0.46 "(1-" 0.46 ")}{400}}=0.1$ or $1-2(1-‘ 0.9775$ ’)
Page 6	Mark Scheme	Syllabus	Paper
:---:	:---:	:---:	:---:
	GCE A LEVEL - May/June 2014	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$
6 (i)	$\begin{aligned} & k \int_{0}^{4}\left(16 t-t^{3}\right) \mathrm{d} t=1 \\ & k\left[8 t^{2}-\frac{t^{4}}{4}\right]_{0}^{4}=1 \\ & k(128-64)=1 \text { o.e. } \\ & k \times 64=1 \\ & \left(k=\frac{1}{64}\right) \mathbf{A G} \end{aligned}$	M1 A1 A1	Int $\mathrm{f}(t)=1$ ignore limits correct integration with correct limits must be convinced (AG)
:---:	:---:	:---:	:---:
(ii)	$\begin{aligned} & \frac{1}{64} \int_{0}^{1}\left(16 t-t^{3}\right) \mathrm{d} t \\ & =\frac{1}{64}\left[8 t^{2}-\frac{t^{4}}{4}\right]_{0}^{1} \\ & =\frac{1}{64}\left[8-\frac{1}{4}\right] \\ & =\frac{31}{256} \text { or } 0.121094 \\ & \left(\frac{31}{256}\right)^{2}=0.0147 \text { (3 s.f.) o.e. } \end{aligned}$	$\begin{array}{lll}\text { M1 } & \\ \text { A1 } \\ \\ \text { A1 } & \\ \text { B1 } & \\ {[4]}\end{array}$	Int $\mathrm{f}(t)$ between 0 and 1 (accept 0 and a value $<1,1$ and 4) correct integration and correct limits (ignore "k") ft their " $\frac{31}{256}$ "
iii	$\begin{aligned} & \frac{1}{64} \int_{0}^{4}\left(16 t^{2}-t^{4}\right) \mathrm{d} t \\ & =\frac{1}{64}\left[\frac{16 t^{3}}{3}-\frac{t^{5}}{5}\right]_{0}^{4} \\ & =\frac{1}{64}\left(\frac{1024}{3}-\frac{1024}{5}\right) \\ & =\frac{32}{15} \text { or } 2.13(3 \text { s.f.) o.e. } \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ & \\ \text { A1 } & {[3]} \end{array}$	Int $t f(t)$ ignore limits correct integration and correct limits (ignore " k ")
Page 7	Mark Scheme	Syllabus	Paper
:---:	:---:	:---:	:---:
	GCE A LEVEL - May/June 2014	9709	72
$7 \quad$ (i)	$2^{\text {nd }}$ More representative of all appointments or Lengths may vary during the day or $1^{\text {st }}$ does not include later appts so not representative	$\begin{array}{\|ll} \hline \text { B1 } & \\ & \\ & \\ & \\ \text { B1 } & {[2]} \end{array}$	Any implication that times or conditions vary throughout day, e.g. doctors get tired
:---:	:---:	:---:	:---:
(ii)	$0.01 \text { o.e. }$ Concluding that times spent are too long when they are not.	B1 B1	Concluding that the mean time spent is more than 10 mins when it is not. Must be in context.
(iii)	H_{0} : Pop mean appt time $($ or $\mu)=10$ H_{1} : Pop mean appt time $($ or $\mu)>10$ $\frac{\frac{147}{12}-10}{\frac{3.4}{\sqrt{12}}}(\pm)$ $=(\pm) 2.292$ or (0.0109 if area comparison done) "2.292" < 2.326 o.e. (No evidence to reject H_{0}.) No reason to believe appts are too long	B1 M1 A1 M1 A1^ [5]	Both correct. Allow μ, but not just "mean" Allow incorrect $\frac{147}{12}$ Must have $\sqrt{ } 12$ (accept totals method) $10+2.326 \times \frac{3.4}{\sqrt{12}} \mathrm{M} 1$ For valid comparison $147<12.28 \mathrm{M} 1$ Comp "2.292" with $12.28 \mathrm{A1}$ 2.326 Or 0.0109 with 0.01 Or $147 / 12$ with 12.28 Dep 2.326, ft their "2.292" No contradictions
(iv)	Normal population	B1 [1]	Must have "population" or equiv

