			<u> </u>						
Page 4		Mark Sche	Syllabus	Paper					
		GCE A LEVEL – Ma	y/Jun	e 20	14	9709	72		
1	$\frac{\Sigma x}{8} = \frac{2}{3}$	$\frac{006}{8} = 250.75 \text{ or } 251 (3 \text{ s.f.})$	B1		Any equivale	ent form			
	$(\Sigma x^2 = 503274)$								
	$\frac{8}{7} \left(\frac{"503274"}{8} - "250.75"^2 \right)$				For use of formula of correct form				
	$= 38.5 \text{ o.e.} (\text{accept } 6.204^2)$			[3]	cao (as final answer)				
2	(X + Y -	$Z) \sim N(8,)$							
	μ=8 (or -	-8)	B1		seen or implied				
	Var(X+	$(Y-Z) = 2^2 + 1.5^2 + 1.8^2$ (= 9.49)	B1		– award at ear				
	$\frac{0-8}{\sqrt{9.49'}}$	$\frac{0-8}{\sqrt{9.49'}} \qquad (=-2.597)$			For standardising (accept sd/var mixed variance must be a combination of at X, Y, Z)				
	Φ('-2.59	$(97') = 1 - \Phi(2.597')$	M1		For area cons	istent with their v	working		
	= 0.0047	,	A1	[5]					
3	H ₀ : Pop	mean (or μ or λ) = 50 (or 5)							
	H ₁ : Pop	mean (or μ or λ) \neq 50 (or 5)	B1		Not just "mea	m"			
	$\frac{60.5-50}{\sqrt{50}}$	<u>)</u> (±)	M1		For standardi	sing with N(50,50	0) or N(5,5/√10)		
	= (±)1.48	85 OR 0.0687 OR C.V	A1		Allow M1 wi correction OF (accept c.v m 48.868)	th wrong or no co R no $$ ethod M1, A1 for	ontinuity c 61.63 or		
	1.485 < No evide	1.645 or 0.0687 > 0.05 ence that mean changed	M1 A1√	[5]	For valid com (S.R For cv c final A1 if cc	nparison (zs or arc omparison 61.63 used)	eas or cv) only award		
					or if $H_1: \lambda > 5$ No evid mean (i.e. if one-tai	i0, 1.485 < 1.96 n changed l test, max B0 M	M1 A0 1 A1 M1 A0)		

	_	N		9709_s14_ms_					
Page 5			Syllabus	Paper					
		GCE A LEVEL - Ma	ay/Jun	le zu	/14	9709	12		
4 (i)	$\lambda = 4.5$	$(1 + 4.5 + 4.5^2)$	B1		seen				
	1 - C	$\left(1+4.5+\frac{1}{2}\right)$	1011		ally λ . Allow	one end error			
	= 0.826 (3 s.f.)		A1	[3]					
(ii)	$e^{-\lambda}=0.52$	23	B1						
	$(-\lambda = \ln 0.523)$								
	$\lambda = 0.648$	8 (3 s.f.)	B1	[2]					
(iii)	$e^{-\mu} \times \frac{\mu^3}{3!} = 24 \times e^{-\mu} \times \mu$		B1						
	$\frac{\mu^2}{6} = 24$		M1		For a simplifi cancelled and	simplified expression in μ^2 with $e^{-\mu}$ and μ elled and no factorials.			
	$\mu = 12$		A1	[3]					
5 (i)	$p = \frac{184}{400}$	or 0.46	B1		Used				
	<i>z</i> = 1.96		B1		Seen				
	"0.46" $\pm z \times \sqrt{\frac{"0.46"(1-"0.46")}{400}}$		M1		Using express	sion of correct for	m		
	= 0.411	to 0.509	A1	[4]	Must be an in	iterval			
(ii)	0.5 with	in CI							
	Claim no	ot supported or not justified	B1√ [^]	[1]	Both needed.	No contradiction	s. ft their (i)		
(iii)	$z \times \sqrt{\frac{"0.}{}}$	$\frac{46"(1-"0.46")}{400} = 0.05$	M1		Allow M1 for	$r_z \times \sqrt{\frac{"0.46"(1-")}{400}}$	0.46") = 0.1		
	z = 2.000	6	A1						
	Φ('2.006	5') = 0.9775							
	$\alpha = 0.97$	775' – (1 – '0.9775')	M1		or $1 - 2(1 - 4)$	0.9775')			
	= 95.5%		A1	[4]					

	-					970	9 <u>s14 ms 7</u> 2		
Page 6		Mark Sch	Syllabus	Paper					
		GCE A LEVEL – M	lay/Jur	<u>1e 20</u>)14	9709	72		
6 (i)	$k \int_{0}^{4} (16t - t^{3}) dt = 1$		M1		Int $f(t) = 1$ ignore limits				
	$k \begin{bmatrix} 6t^2 - \frac{1}{4} \end{bmatrix} 0^{-1}$ k(128 - 64) = 1 o.e. $k \times 64 = 1$		A1		correct integration with correct limits				
	$\left(k=\frac{1}{64}\right)$	AG	A1	[3]	must be conv	nust be convinced (AG)			
(ii)	$\frac{1}{64} \int_{0}^{1} (16)$	$(t-t^3) dt$	M1		Int f(<i>t</i>) betwe < 1 , 1 and 4)	en 0 and 1 (accep	t 0 and a value		
	$=\frac{1}{64}\left[8\right]$	$\begin{bmatrix} t^2 - \frac{t^4}{4} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	A1		correct integr (ignore "k")	ation and correct	limits		
	$= \frac{1}{64} \begin{bmatrix} 8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$-\frac{1}{4}$ or 0.121094	A1						
	256				21				
	$\left(\frac{31}{256}\right)^2 =$	= 0.0147 (3 s.f.) o.e.	B1√ [*]	[4]	ft their " $\frac{31}{256}$	"			
iii	$\frac{1}{64} \int_{0}^{4} (16)$	$t^2 - t^4$)dt	M1		Int <i>t</i> f(<i>t</i>) ignor	e limits			
	$=\frac{1}{64}\left[\frac{1}{64}\right]$	$\frac{6t^3}{3} - \frac{t^5}{5} \Big]_0^4$	A1		correct integr (ignore "k")	ation and correct	limits		
	$=\frac{1}{64}\left(\frac{1}{64}\right)$	$\frac{024}{3} - \frac{1024}{5}$							
	$=\frac{32}{15}$ or	2.13 (3 s.f.) o.e.	A1	[3]					

Pa	ae 7	Mark Sch	Syllabus							
		GCE A LEVEL – May/June 2014					9709			
7 (i)	2 nd More representative of all appointments or Lengths may vary during the day or 1 st does not include later appts so not representative			[2]	Any implication that times or conditions vary throughout day, e.g. doctors get tired					
(ii)	0.01 o.e Concluc when th	ling that times spent are too long ey are not.	B1 B1	[2]	Concluding than 10 mins	Concluding that the mean time spent is more than 10 mins when it is not. Must be in context				
(iii)	H ₀ : Pop H ₁ : Pop $\frac{147-10}{\frac{12}{\sqrt{12}}}$ = (±)2.2 done)	mean appt time (or μ) = 10 mean appt time (or μ) > 10 -(±) 92 or (0.0109 if area comparison	B1 M1 A1		Both correct. μ , but not just Allow incorrect Must have $\sqrt{1}$ (accept totals method)	Allow "mean" ect $\frac{147}{12}$ 2	10 + 2.2 = 12.28	$326 \times \frac{3.4}{\sqrt{12}}$ M1 S A1		
	"2.292" (No evid No rease	< 2.326 o.e. dence to reject H ₀ .) on to believe appts are too long	M1 A1√	[5]	For valid com Comp "2.292 2.326 Or 0.0109 wi Or 147/12 wi Dep 2.326, ft "2.292" No contradict	pparison " with th 0.01 th 12.28 their tions	<u>147</u> <	12.28 M1		
(iv)	Normal	population	B1	[1]	Must have "p	opulation	" or equi	v		