		9709	9 s14 ms 71	1
Page 4	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – May/June 2014	9709	71	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise < 3 sfs only once in paper.

1	N(483.2, 537.92) or N(483.2, 23.2 ²)	B1	or $\frac{8.2}{\sqrt{8}}$ or $\frac{8.2^2}{8}$ seen or implied
			$\sqrt{8}$ $\frac{436}{-60.4}$
	$\frac{436-483.2}{\sqrt{537.92}}$ or $\frac{436-483.2}{23.2}$ (=-	M1	or $\frac{\frac{100}{8}-60.4}{8.2/\sqrt{8}}$ standardising (no mixed methods)
	2.035)	M1	Correct area consistent with their working
	$\Phi(``-2.035'') = 1 - \Phi(``2.035'') = 0.021 \text{ or } 2.1\%$	A1 [4]	
		[Total: 4]	
2	$\frac{70}{69} \times 2.70 = 2.73913$	M1A1	
	$3.61 \pm z \sqrt{\frac{"2.73913"}{70}}$	M1	or $3.61 \pm z \sqrt{\frac{2.70}{69}}$ M2A1(implied)
			without $\frac{70}{69}$: $3.61 \pm z \sqrt{\frac{2.70}{70}}$ M0A0M1
	z = 1.96 3.22 to 4.00 (3 sf)	B1 A1 [5]	z = 1.96 B1 3.23 to 3.99(4.00) (3 sf) A1 Answer must be an interval
		[Total: 5]	
3	$H_0: \mu = 250$	B1	Both hypotheses
	H ₁ : $\mu > 250$ 250.06-250	M1	M1 for standardising, must have $\sqrt{40}$.
	$\frac{250.06 - 250}{0.2 \div \sqrt{40}}$	A1	Accept cv method
	= 1.90 comp with $z = 1.645$ Claim is justified	M1	For valid comparison "1.90" with 1.645 or area
	or There is evidence that claim is true	A1 √ [5]	comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0
		[Total: 5]	
4 (i)	B(3500, 0.001)	B1	$\operatorname{pr} \operatorname{Po}(2,5)$
	Poisson with mean = 3.5 n > 50 and $np < 5$	B1 B1 [3]	or Po(3.5) Both. Or $n > 50$ and $\lambda < 5$ or $3.5 < 5$
(ii)	$e^{-3.5}(1+3.5+\frac{3.52}{2}+\frac{3.53}{3!})$	M1	Allow any λ
	= 0.537 (3 dp)	A1 [2]	
1		[Total: 5)	

								9 <u>s14</u> ms_71
	Page 5			Mark Scheme			Syllabus	Paper
	GCE A LEVEL – M			/lay/Ju	ne 20	14	9709	71
5	(i)	0.25(1 + (=1.25 A	$(4+9) - 1.5^2$ G)	B1	[1]			
	(ii)	$\frac{1.4-1.5}{\sqrt{\frac{5}{4}\div 300}}$	= (= -1.549)	M1		$\frac{1.4 - \frac{1}{600} - 1.5}{\sqrt{\frac{5}{4} \div 300}}$; - (= -1.52	23)
		$\Phi(``-1.549") = 1 - \Phi(``1.549")$ = 0.0607 (3 sf)		M1 A1	[3]	· · · · · · · · · · · · · · · · · · ·	$= 1 - \Phi($ "1.523" sf))
	(iii)	$(\overline{X}(app))$	mple or large <i>n</i> rox) normally distr)					
		Central I	Limit Theorem	B1	[1]			
				[Tot	al: 5]			
6	(i)			B1 M1 M1		p = 0.9 p < 0.9 Use of B(20, Allow 1–P(1	0.1) 8,19,20) or 1–P(16,17,18,19,20)
		$\times 0.9^{10} +$ = 0.133 (A1	[4]			
	(ii)	Type II H ₀ will n	ot be rejected	B1 B1	[2]	or Stephan w No contradic	vill conclude stan	dard not fallen
				[Tot	al: 6]			

De		Mark Sak			9709 s14 ms 71
Pa	Page 6 Mark Sch GCE A LEVEL – M			ne 20'	SyllabusPaper014970971
			lay/ou		
7 (i)	$\int_{1}^{a} \frac{k}{x} dx =$ $k[\ln x]_{1}^{a}$	1	M1		Int $f(x)$ & equate to 1. Ignore limits
	$k[\ln x] \frac{a}{1}$	= 1	A1		Correct integration and limits and = 1
	$k \ln a = 1$	k = 1/lna	A1	[3]	AG
(ii)	$\frac{1}{\ln a} \int_{1}^{a} dx$	or $k \int_{1}^{a} 1 dx$	M1		Int $xf(x)$. Ignore limits
		$\begin{bmatrix} a \\ 1 \end{bmatrix}$ or $k[x] \begin{bmatrix} a \\ 1 \end{bmatrix}$	A1		Correct integration and limits (condone missing k)
	$=\frac{1}{\ln a}(a$	-1)	A1	[3]	
(iii)	$\frac{1}{\ln a} \int_{1}^{m} \frac{1}{x} dx$	dx = 0.5	M1		Int $f(x)$ and equate to 0.5. Ignore limits
		$\begin{bmatrix} m \\ 1 \end{bmatrix} = 0.5$	A1		Correct integration and limits (1 to m or m to a (condone missing k)
	$\frac{1}{\ln a}\ln m$	= 0.5			
	$\ln m = 0.3$ $m = \sqrt{a}$	5ln <i>a</i>	A1 A1	[4]	or $\ln m = \ln a^{0.5}$
			[Tota	l: 10]	
8 (i)		t have neg value ot have non-integer value	B1 B1	[2]	
(ii)		$p \text{ and } \lambda e^{-\lambda} = 2.5 p$ ce $\lambda = 2.5 \text{ AG}$)	B1	[1]	or equiv explanation
(ii)	(b) 1 – e	$^{-2.5}(1+2.5+\frac{2.52}{2})$	M1		Allow one end error
	= 0.4	56 (3 sf)	A1	[2]	
(iii)	$\Phi^{-1}(0.57$	93) = -0.2	B1		
	••••	een or implied	M1		
	$\frac{40.5-\mu}{\sqrt{\mu}}$	= ``0.2''	M1		Allow no cc or incorrect cc
	μ + "-0.2	$2^{"}\sqrt{\mu} - 40.5 = 0$			
	$\sqrt{\mu} = \frac{"0}{}$	$2"\pm\sqrt{"0.2"^2+4\times40.5}$	M1		For solving quadratic in $\sqrt{\mu}$ (or μ)
		(= 6.4647)		r - -	Ignore other answer for $\sqrt{\mu}$, but not for μ
	$\mu = 41.8$	(3 sf)	A1	[5]	
			[Tota	l: 10]	

[Total for paper 50]