Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding. Penalise <3 sfs only once in paper.

1	$\mathrm{N}(483.2,537.92) \text { or } \mathrm{N}\left(483.2,23.2^{2}\right)$ $\begin{align*} & \frac{436-483.2}{\sqrt{537.92}} \text { or } \frac{436-483.2}{23.2}(=- \\ & 2.035) \tag{4}\\ & \Phi("-2.035 ")=1-\Phi(" 2.035 ") \\ & =0.021 \text { or } 2.1 \% \end{align*}$	B1 M1 M1 A1	or $\frac{8.2}{\sqrt{8}}$ or $\frac{8.2^{2}}{8}$ seen or implied or $\frac{\frac{436}{8}-60.4}{8.2 / \sqrt{8}}$ standardising (no mixed methods) Correct area consistent with their working
		[Total: 4]	
2	$\begin{aligned} & \frac{70}{69} \times 2.70 \quad=2.73913 \\ & 3.61 \pm z \sqrt{\frac{" 2.73913 "}{70}} \end{aligned}$ $\begin{aligned} & z=1.96 \\ & 3.22 \text { to } 4.00(3 \mathrm{sf}) \end{aligned}$	M1A1 M1 B1 A1 [5]	$\begin{aligned} & \text { or } 3.61 \pm z \sqrt{\frac{2.70}{69}} \text { M2A1(implied) } \\ & \text { without } \frac{70}{69}: \\ & 3.61 \pm z \sqrt{\frac{2.70}{70}} \quad \text { M0A0M1 } \\ & z=1.96 \\ & 3.23 \text { to } 3.99(4.00)(3 \mathrm{sf}) \quad \text { A1 } \end{aligned}$ Answer must be an interval
		[Total: 5]	
3	$\begin{aligned} & \mathrm{H}_{0}: \mu=250 \\ & \mathrm{H}_{1}: \mu>250 \\ & \frac{250.06-250}{0.2 \div \sqrt{40}} \\ & =1.90 \\ & \text { comp with } z=1.645 \\ & \text { Claim is justified } \\ & \text { or There is evidence that claim is true } \end{aligned}$	B1 M1 A1 M1 A1 \downarrow [5]	Both hypotheses M1 for standardising, must have $\sqrt{ } 40$. Accept cv method For valid comparison " 1.90 " with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0
		[Total: 5]	
$4 \quad$ (i)	B(3500, 0.001) Poisson with mean $=3.5$ $n>50$ and $n p<5$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } \\ \text { B1 } \end{array}$	or $\operatorname{Po}(3.5)$ Both. Or $n>50$ and $\lambda<5$ or $3.5<5$
(ii)	$\begin{aligned} & \mathrm{e}^{-3.5}\left(1+3.5+\frac{3.52}{2}+\frac{3.53}{3!}\right) \\ & =0.537(3 \mathrm{dp}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	Allow any λ
		[Total: 5)	

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	71

5 (i)	$\begin{aligned} & 0.25(1+4+9)-1.5^{2} \\ & (=1.25 \mathbf{A G}) \end{aligned}$	B1 [1]	
(ii)	$\frac{1.4-1.5}{\sqrt{\frac{5}{4} \div 300}} \quad(=-1.549)$ $\begin{aligned} & \Phi("-1.549 ")=1-\Phi(" 1.549 ") \\ & =0.0607(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	$\begin{aligned} & \frac{1.4-\frac{1}{600}-1.5}{\sqrt{\frac{5}{4} \div 300}} \quad(=-1.523) \\ & \Phi\left({ }^{\prime}-1.523 "\right)=1-\Phi(" 1.523 ") \\ & =0.0639(3 \mathrm{sf}) \end{aligned}$
(iii)	Large sample or large n (\bar{X} (approx) normally distr) or Central Limit Theorem	B1 [1]	
		[Total: 5]	
6 (i)	$\begin{aligned} & \mathrm{H}_{0}: \text { Rate }=0.9 \\ & \mathrm{H}_{1}: \text { Rate }<0.9 \\ & 1-\mathrm{P}(17,18,19,20) \\ & 1-\left({ }^{20} \mathrm{C}_{17} \times 0.1^{3} \times 0.9^{17}+{ }^{20} \mathrm{C}_{18} \times 0.1^{2}\right. \\ & \left.\times 0.9^{18}+20 \times 0.1 \times 0.9^{19}+0.9^{20}\right) \\ & =0.133(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$	$\begin{aligned} & \mathrm{p}=0.9 \\ & \mathrm{p}<0.9 \end{aligned}$ Use of $\mathrm{B}(20,0.1)$ Allow 1-P (18,19,20) or 1-P (16,17,18,19,20)
(ii)	Type II H_{0} will not be rejected	$\begin{array}{\|ll} \text { B1 } & \\ \text { B1 } & {[2]} \end{array}$	or Stephan will conclude standard not fallen No contradictions
		[Total: 6]	

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	$\mathbf{7 1}$

7 (i)	$\begin{align*} & \int_{1}^{a} \frac{k}{x} \mathrm{~d} x=1 \\ & k[\ln x]_{1}^{a}=1 \\ & k \ln a=1 \quad k=1 / \operatorname{lna} \tag{3} \end{align*}$	M1 A1 A1	Int $\mathrm{f}(x) \&$ equate to 1 . Ignore limits Correct integration and limits and $=1$ AG
(ii)	$\begin{aligned} & \frac{1}{\ln a} \int_{1}^{a} 1 \mathrm{~d} x \\ & =\frac{\text { or } k \int_{1}^{a} 1 \mathrm{~d} x}{\ln a}[x] \\ & = \\ & =\frac{1}{\ln a}(a-1) \end{aligned}$	M1 A1 A1 [3]	Int $x \mathrm{f}(x)$. Ignore limits Correct integration and limits (condone missing k)
(iii)	$\begin{aligned} & \frac{1}{\ln a} \int_{1}^{m} \frac{1}{x} \mathrm{~d} x=0.5 \\ & \frac{1}{\ln a} \ln ^{[\ln x]_{1}^{m}}=0.5 \\ & \frac{1}{\ln a} \ln m=0.5 \\ & \ln m=0.5 \ln a \\ & m=\sqrt{ } a \end{aligned}$	M1 A1 A1 A1 [4]	Int $\mathrm{f}(x)$ and equate to 0.5 . Ignore limits Correct integration and limits (1 to m or m to a) (condone missing k) or $\ln m=\ln a^{0.5}$
		[Total: 10]	
8 (i)	V : cannot have neg value W : cannot have non-integer value	$\begin{align*} & \mathrm{B} 1 \tag{2}\\ & \mathrm{~B} 1 \end{align*}$	
(ii)	(a) $\mathrm{e}^{-\lambda}=p$ and $\lambda \mathrm{e}^{-\lambda}=2.5 p$ (Hence $\lambda=2.5$ AG)	B1 [1]	or equiv explanation
(ii)	$\begin{aligned} \text { (b) } & 1-\mathrm{e}^{-2.5}\left(1+2.5+\frac{2.52}{2}\right) \\ = & 0.456(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow one end error
(iii)	$\Phi^{-1}(0.5793) \quad=-0.2$ $\mathrm{N}(\mu, \mu)$ seen or implied $\begin{aligned} & \frac{40.5-\mu}{\sqrt{\mu}}="-0.2 " \\ & \mu+"-0.2 " \sqrt{\mu}-40.5=0 \\ & \sqrt{\mu}=\frac{" 0.2 " \pm \sqrt{{ }^{40.2 " 2}+4 \times 40.5}}{2} \\ & \mu=41.8(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 M1 A1 	Allow no cc or incorrect cc For solving quadratic in $\sqrt{ } \mu$ (or μ) Ignore other answer for $\sqrt{ } \mu$, but not for μ
		[Total: 10]	

