							-		1		<u>63</u>
	Pa	ge 4		Mark Scheme GCE AS/A LEVEL – May/June 2014					2011	Syllabus Paper	
				G	JE A5/A	LEVEL	– may/J	une	2014	9709	63
1	(i)	8	Adults Children 4 3 8 6 5 4 3 5 4 7 4 3 3 2 1 6 1 2 7 8 8 4 3 1 7 2 7 8 1 3 4 6 9 9 9 2 5			B1 B1		Single stem and key correct – including adults, children and seconds Right hand leaves correct shape			
		key 3 5 4 represents 53 seconds for adults and 54 seconds for children			B1	3	Left hand leaves correct shape				
	(ii)	 (ii) Two from: Children's estimates more spread out Adults estimates lower Adults are symmetrical whereas children are skewed 					B1 B1	2	oe oe oe		
2	(i)	(i) $np = 252 \times 1/7 = 36,$ $npq = 252 \times 1/7 \times 6/7 = 30.857$				B1		Unsimplified 36 and 30.857 seen, oe any standardising, sq rt needed any continuity correction either 29.5, 30.5, 43.5, 44.5			
	$P\left(z < \left(\frac{29.5 - 36}{\sqrt{30.857}}\right)\right) + P\left(z > \left(\frac{44.5 - 36}{\sqrt{30.857}}\right)\right)$ $= P\left(z < -1.170\right) + P(z > 1.530)$ $= 1 - 0.8790 + 1 - 0.9370$					$\left(\overline{\overline{0.857}}\right)$	M1 M1				
)					
						M1		correct area 2 –	$(\Phi_1 + \Phi_2)$		
	= 0.184						A1	5	correct answer		
	(ii) np and nq are both > 5					B1	1	must have both			
3	(i)	(i) $P(2) = {}^{6}C_{3} \times {}^{3}C_{2} / {}^{9}C_{5}$ OR				M1 OR		Using combinations ${}^{a}C_{b} \times {}^{c}C_{d} / {}^{e}C_{f}$			
	\mathbf{OR} $3/9 \times 2/8 \times 6/7 \times 5/6 \times 4/5 \times {}^{5}C_{2} = 10/21$						M1 OR M1 A1	2	Mult 5 probs wir If ${}^{5}C_{2}$ replace by Legit method, as	10, oe must be j	ustified
							[
			0	1	2	3	B1			in table if $P(x) =$	= 0 or blank and
	Р	rob	2/42	15/42	20/42	5/42			values in table for	or $x = 0, 1, 2, 3$	
	$P(0) = {}^{6}C_{5} / {}^{9}C_{5} = 6/126$ $P(1) = {}^{6}C_{4} \times {}^{3}C_{1} / {}^{9}C_{5} = 45/126$ $P(3) = {}^{6}C_{2} \times {}^{3}C_{3} / 126 = 15/126$						B1 B1 B1√ [≜]	4	Any correct prob Any other correct $\Sigma P(x) = 1, 3 < n(x)$	•	

	Pa	ge 5	Mark So	cheme		Syllabus	<u>s14_ms_6</u> Paper		
		•	GCE AS/A LEVEL	e 2014	9709	63			
4	(i)	new mean $\frac{172.6 \times 28 - 161.8}{27} = 173$			2	Mult by 28, subt 161.8 and dividing by 27 or 28 Correct ans			
	(ii)	= 834728.		M1 A1		Subst in formula to find Σx^2 and attempt to make Σx^2 subject, with 2 terms both squared Correct answer Subtract 161.8 ² from their original Σx^2			
		= 808549.	$g \Sigma x^{2} = 834728.6 - 161.8^{2}$ a_{36} a_{36} $a_{36} = \sqrt{\frac{808549.36}{27} - 173^{2}}$ $= 4.16$	M1 A1	4		ccept 4.15 or 3.93	al ∠x-	
5	(i)	z = -1.282				Rounding to ±	Rounding to \pm 1.28 seen		
		-1.282 =	$\frac{t-6.5}{1.76}$	M1		Standardising.	, no cc, no sq or sq	rt, $z \neq \pm 0.9, \pm 0.7$	
		<i>t</i> = 4.24		A1	3	Correct answe	er, accept 4.25		
	(ii)	P(z < 1) =	0.8413	M1		z = 1 used to f	ind a probability		
			sd of mean) = $2\Phi - 1$ = 0.6826	B1		0.67, 0.68, not	accept answer roun t from wrong work a implies first M1.	•	
		$P(8, 9) = {}^{9}C_{8}(0.68)$	$26)^8(0.3174) + (0.6826)^9$	M1 M1		Binomial term Binomial expr	$p^r(1-p)^{9-r} C_r$, ression for P(8)+P(C_r must be see 9), any p	
		= 0.167		A1	5	Correct ans			
6	(i)	P(B champ	$(0) = 0.7 \times 0.7 = 0.49$	B1	1				
	(ii)	· · · · · ·	+ $P(WLW) + P(LWW)$) + (0.7×0.3×0.7) +	M1		Summing at le which is 3-fac	east 2 options, at le tor	ast one of	
			0.147 + 0.147	B1 A1	3	0.147 seen, un Correct answe	-		
	(iii)		$=\frac{P(T2\cap T)}{P(T)}$	M1		Attempt P(T2) terms	\cap T) seen anywher	e sum of 2	
		$= \frac{0.3 \times 0.3}{= 0.708}$	$\frac{0}{0.216} + 0.7 \times 0.3 \times 0.3}{0.216}$	A1 M1 A1			plified num of a fr neir (1 – (ii) √) oe	action	

Page 6		Mark Scheme		Syllabus	<u>9_s14_ms_6</u> Paper	
	GCE AS/A	LEVEL – May/	June	2014	9709	63
7 (i) (a)	6! (×) 4! OR (×) 4 × 3	M1 M1		Seen in a single term expression as numerator Seen in a single term expression as numerator (denominator may be 1)		
	÷ 2!2!3! OR ÷ 2!3!	M1			le term expression	as denominator
	Total 720 ways	A1	4	Correct ans		
(i) (b)	$1^{******3} = \frac{7!}{3!2!} = 420$	B1		$\frac{7!}{3!2!}$ seen oe		
	3*****1= 420 3*****3= 420	M1		Attempting to 1***3, 3***1,	evaluate and sum 3***3	at least 2 of
	Total = 1260 ways	A1	3	Correct ans		
(ii) (a)	$5 \times 4 \times 3 = 60$ ways (⁵ P ₃)	M1 A1	2	⁵ P ₃ or ⁵ C ₃ \times 3! Correct ans	(can be implied)	
(ii) (b)	2** in 212, 213, 214, 216, 221, 223, 224, 226, 231, 232, 233, 234, 236, 241, 242, 243, 246 261, 262, 263, 264, 266	M1		Listing attemp correct entries	t starting with 2, a	t least 10
	Total = 22 ways	A1	2	Correct ans		
	Alternative Methods: $3 \times {}^{4}C_{1} + 2 \times {}^{5}C_{1}$	M1		$p \times {}^{4}\mathrm{C}_{1} + q \times {}^{5}$	C ₁ , oe $p + q > 2$	
	OR ${}^{5}P_{2} + {}^{2}C_{1}$	OR M1		⁵ P ₂ seen		
	OR ${}^{4}P_{2} + 2 \times {}^{4}P_{1} + {}^{2}C_{1}$	OR M1		Any 2 terms a	dded	