Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	63

9709 s14 ms 63

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	63

4 (i) new mean $\frac{172.6 \times 28-161.8}{27}=173$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \mathbf{2} \end{array}$	Mult by 28 , subt 161.8 and dividing by 27 or 28 Correct ans
$\text { (ii) } \begin{aligned} & \text { original } \Sigma x^{2}=\left(4.58^{2}+172.6^{2}\right) \times 28 \\ &=834728.6(835000) \\ & \text { Remaining } \Sigma x^{2}= \\ &=8344728.6-161.8^{2} \\ & \text { sd of remaining }=\sqrt{\frac{808549.36}{27}-173^{2}} \\ &=4.16 \end{aligned}$	M1 A1 M1 A1 4	Subst in formula to find Σx^{2} and attempt to make Σx^{2} subject, with 2 terms both squared Correct answer Subtract 161.8^{2} from their original $\sum x^{2}$ Correct ans, accept 4.15 or 3.93
5 (i)	B1 M1 A1 3	Rounding to ± 1.28 seen Standardising, no cc, no sq or sq rt, $z \neq \pm 0.9, \pm 0.1$ Correct answer, accept 4.25
(ii) $\begin{aligned} & \mathrm{P}(z<1)=0.8413 \\ & \begin{aligned} \mathrm{P}(\text { within 1sd of mean }) & =2 \Phi-1 \\ & =0.6826 \end{aligned} \end{aligned}$ $\begin{aligned} & \mathrm{P}(8,9) \\ & ={ }^{9} \mathrm{C}_{8}(0.6826)^{8}(0.3174)+(0.6826)^{9} \\ & =0.167 \end{aligned}$	M1 B1 M1 M1 A1 $\mathbf{5}$	$z=1$ used to find a probability correct prob, accept answer rounding to 0.66 , $0.67,0.68$, not from wrong working. If quoted, then implies first M1. Binomial term $p^{r}(1-p)^{9-r 9} \mathrm{C}_{r},{ }^{9} \mathrm{C}_{r}$ must be seen Binomial expression for $\mathrm{P}(8)+\mathrm{P}(9)$, any p Correct ans
6 (i) $\mathrm{P}(\mathrm{B}$ champ $)=0.7 \times 0.7=0.49$	B1	
$\text { (ii) } \begin{aligned} & \mathrm{P}(\mathrm{~B} \text { champ }) \\ & =\mathrm{P}(\mathrm{WW})+\mathrm{P}(\mathrm{WLW})+\mathrm{P}(\mathrm{LWW}) \\ & =(0.7 \times 0.7)+(0.7 \times 0.3 \times 0.7)+ \\ & (0.3 \times 0.7 \times 0.7) \\ & =0.49+0.147+0.147 \\ & =0.784 \end{aligned}$	M1 B1 A1 3	Summing at least 2 options, at least one of which is 3 -factor 0.147 seen, unsimplified Correct answer
$\text { (iii) } \begin{aligned} & \mathrm{P}(T 2 \mid T)=\frac{P(T 2 \cap T)}{P(T)} \\ & =\frac{0.3 \times 0.3+0.7 \times 0.3 \times 0.3}{0.216} \\ & =0.708 \end{aligned}$	M1 A1 M1 A1 4	Attempt $\mathrm{P}(\mathrm{T} 2 \cap \mathrm{~T})$ seen anywhere sum of 2 terms Correct unsimplified num of a fraction Dividing by their (1 - (ii) ${ }^{\vee}$) oe Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	63

7 (i) (a) 6! $\begin{aligned} & (\times) 4!\text { OR }(x) 4 \times 3 \\ & \div 2!2!3!\text { OR } \div 2!3! \end{aligned}$ Total 720 ways	M1 M1 M1 A1 4	Seen in a single term expression as numerator Seen in a single term expression as numerator (denominator may be 1) Seen in a single term expression as denominator Correct ans
$\text { (i) (b) } \begin{aligned} & 1^{* * * * * * * 3}=\frac{7!}{3!2!}=420 \\ & 3^{* * * * * * *}=420 \\ & 3^{* * * * * * * 3}=420 \\ & \text { Total }=1260 \text { ways } \end{aligned}$	B1 M1 A1 3	$\frac{7!}{3!2!}$ seen oe Attempting to evaluate and sum at least 2 of $1 * * * 3,3^{* * *} 1,3^{* * *} 3$ Correct ans
(ii) (a) $5 \times 4 \times 3=60$ ways $\left({ }^{5} \mathrm{P}_{3}\right)$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	${ }^{5} \mathrm{P}_{3}$ or ${ }^{5} \mathrm{C}_{3} \times 3$! (can be implied) Correct ans
(ii) (b) $\begin{aligned} & 2^{* *} \text { in } \\ & 212,213,214,216, \\ & 221,223,224,226, \\ & 231,232,233,234,236, \\ & 241,242,243,246 \\ & 261,262,263,264,266 \\ & \text { Total = 22 ways } \end{aligned}$ Alternative Methods: $3 \times{ }^{4} \mathrm{C}_{1}+2 \times{ }^{5} \mathrm{C}_{1}$ OR ${ }^{5} \mathrm{P}_{2}+{ }^{2} \mathrm{C}_{1}$ OR ${ }^{4} \mathrm{P}_{2}+2 \times{ }^{4} \mathrm{P}_{1}+{ }^{2} \mathrm{C}_{1}$	M1 A1 2 M1 OR M1 OR M1	Listing attempt starting with 2 , at least 10 correct entries Correct ans $p \times{ }^{4} \mathrm{C}_{1}+q \times{ }^{5} \mathrm{C}_{1}$, oe $p+q>2$ ${ }^{5} \mathrm{P}_{2}$ seen Any 2 terms added

