				<u>9709_s14_ms_42</u>			
	Page		Syllabus Paper				
		GUE AS/	A LEVEL – May/June 2014		9709	42	
1	(i)	$DF = 22500 \div 18$	B1				
			M1		For using Newton's 3 terms	s second law with	1
		$22500/18 - R = 600 \times 1.4$	Al				
		R = 410 N	A1	4			
	(ii)	Rate of working is 6150 W	B1√ [^]	1	ft on incorrect R, i.	e. R × 15	
2	(i)		M1		For using $s = ut + \frac{1}{2} at^2$ to obtain equation in T from $s_{AP} + s_{BP} = 10$		
		$\frac{1}{2} 0.5 \text{T}^2 + 0.75 \text{T} = 10$	A1				
		$[T^2 + 3T - 40 = 0 = (T + 8)]$) (T – 5)]		For solving the rest quadratic equation factorising or form	ulting 3 term either by ula and finding a	
			M1		value for T	and morning a	
		T = 5 only	A1	4	Reject/ignore $T = $	- 8	
		Alternative mar			r 2(i)		
	(i)	$x = \frac{1}{2} \frac{1}{2} T^{2} 10 - x = \frac{3}{4} T$ Eliminate T $x = \frac{1}{4} [\frac{4}{3}(10 - x)]^{2}$	M1		Set up an equation travelled by particle	for x , the distanc e A	e
		<i>x</i> = 6.25	Al		Solve for x reject/ignore $x = 16$	5	
		$10 - 6.25 = \frac{3}{4}$ T or $6.25 =$	¹ / ₄ T ² M1		Substitute for <i>x</i> into above equations	o either of the	
		T = 5	A1		Reject/ignore $T = -$	-5	
	(ii)	Speed is $2.5 \mathrm{ms}^{-1}$	B1√^	1	ft for speed = $0.5T$		
3			M1		For resolving force horizontally (3 term	s acting on P ns)	
		$0.8T_1 + 0.96T_2 = 10$ or $T_1 \cos 36.9 + T_2 \cos 16.3 =$	= 10 A1				
			M1		For resolving force vertically (3 terms)	s acting on P	
		$0.6T_1 - 0.28T_2 = 0.7g$ or $T_1 \sin 36.9 - T_2 \sin 16.3 =$	0.7g A1				
			M1		For solving simulta and finding both T_1	nneous equations $_1$ and T_2	
		$T_1 = 11.9$ and $T_2 = 0.$	5 A1	6			

			•						9709	9 <u>_</u> s14_ms_	42
		Page	9 5		Mark Sc	heme			Syllabus	Paper	
				GCE AS	S/A LEVEL -	- May/June	2014		9709	42	
4	(i)						M1		For differentiation $t \ge 8$	to find $a(t)$ for	ſ
			a(t) = t	^{1/3} /3			Al				
			[0.25 -	(1/2)/3 = 1/4 -	1/6]		M1		Decrease = $a(8^{-})$ –	$a(8^{+})$	
			Decreas	e is $1/12 \mathrm{ms}^{-2}$	L		A1	4	AG		
	(ii)						B1		$s_1 = \frac{1}{2} \frac{1}{4} 8^2 = 8$		
			$s_2 = \int_{8}^{27} \frac{1}{2}$	$t^{2/3}dt = [0.3t^5]$	$\left[\frac{3}{3} \right]_{8}^{27}$		M1		Using definite integ	gration to find	s ₂
			Distance	e is 71.3 m			A1	3	$s_1 + s_2 = 71.3$		
				Alte	ernative metl	hod for the f	inal tw	o ma	rks		
			$s = \int \frac{1}{2}t$	$^{2/3}dt = 0.3t^{5/3} +$	С				Using indefinite int and finding the con	egration to fir stant of	nd s
			s(8) = 8	β gives $c = -1.6$			M1		integration by using	g the value of	<i>s</i> ₁
			<i>s</i> (27) =	$0.3(27)^{5/3} - 1.6 =$	71.3		A1		Finding <i>s</i> (27)		
5	(i)		KE gain	is $10.5v^2$ J			B1	1			
	(ii)	(a)	[PE Los	s = 16 (10) x - 5	5 (10) x sin 30]	M1		For use of PE = mg system = loss by B	h and Loss by – gain by A	I
			PE loss	by system is 135	5x J		A1	2			
		(b)	R = 5 (1	$(0) \times (\sqrt{3} \div 2)$			B1				
			F = 25				B1				
			Work de	one is $25x$ J			B1√	3	ft incorrect F		
	(iii)		$[10.5v^2]$	= 135x - 25x]			M1		For using 'Gain in WD against friction	KE = Loss in	PE –
			$21v^2 = 2$	220x			A1	2	AG		
6	(i)		$v^2 = 2 \times$ \Rightarrow sp	$g \times 7.2$ beed at surface is	s 12 ms ⁻¹		B1				
			$[6^2 = 12]$	$a^{2} + 2a \times 0.8$]			M1		For using $6^2 = v^2 +$ and finding <i>a</i>	2 <i>as</i>	
			Deceler	ation is 67.5 ms ⁻	-2		A1				
			[0.2 <i>g</i> –]	$R = -0.2 \times 67.5$]		M1		For using Newton's three terms for P in	s 2 nd law with the liquid	
			R = 15.5	5			A1	5			

Page	. 6		Mark Scheme	9709_s14_ms_42 Syllabus Paper		
		GCE A	AS/A LEVEL – May/Ju	ne 2014		9709 42
(ii)	[3.6 =	$\frac{1}{2} a \times 4^2$]		M1		For using $s = 0 + \frac{1}{2} at^2$ and finding <i>a</i>
	a=0.4	$45{\rm ms}^{-2}$		A1		
	$[T - R - 0.2g = 0.2 \times 0.45]$		M1		For using Newton's 2 nd law with P in the liquid	
	Tensic	on is 17.6 N	(17.59 exact)	Al√	4	ft incorrect R
	Alternative Energy Me		y Methoo	d		
(i)				M1		For using PE lost = WD by R in liquid + KE gain
	$0.2g \times$	$8 = R(0.8) + \frac{1}{2}$	$(0.2) 6^2$	A1		
	R = 15	5.5		A1		Finding R
	0.2 <i>g</i> –	15.5 = 0.2a		M1		For using Newton's 2 nd law in the liquid
	a = -6	7.5		A1	5	
(ii)				M1		For using $s = (0 + v)/2 \times t$ to find v at surface of liquid
	3.6 = 1	$v/2 \times 4$ $v = 1$	1.8	A1		
	$T(3.6) = R(3.6) + 0.2g(3.6) + \frac{1}{2}(0.2)1.8^{2}$		M1		For using WD by T = WD by R + PE gain + KE gain	
	T = 17	′.6N		A1	4	
7 (i)	[T _A –	$2.5 = 0.25 \times a$]	$[7.5 - T_B = 0.75 \times a]$] M1		For applying Newton's 2 nd law to either particle A or particle B
	$T_A = 2$	2.5 + 0.25a		A1		
	$T_B = 7$	1.5 - 0.75a		A1	3	
(ii)	F = 0.4	4×5		B1		
	[T _B – 7	$\Gamma_{\rm A}-{\rm F}=0.5a]$		M1		For using Newton's 2 nd law for P with friction and both tensions represented (4 terms)
	7.5-0	0.75a - (2.5 + 0.)	$25a) - 2 = 0.5a \Rightarrow a = 2$	A1	3	AG

	9 <u>s14_ms_4</u> 2					
Page 7		Mark Scheme			Syllabus	Paper
		GCE AS/A LEVEL – May/Jur	ne 2014		9709	42
		Alternativ	e method	l for (ii)	
(ii)	F = 0.	4 × 5	B1			
	$a = 2$ $T_{\rm B} - 7$	used to find $T_A = 3$, $T_B = 6$ and used in $T_A - F = 0.5 \times a$	M1		Assume given values T_B and use the value Newton's 2^{nd} law	te of a , find T_A and tes in 4 term
	<i>a</i> = 2		A1		Justify the value <i>a</i>	= 2
(iii)	$[v^2 = 2]$	$2 \times 2 \times 0.36$]	M1		For using $v^2 = 2as$ $s = 1 - \frac{1}{2} (5.28 - 4)$	with)
	Speed	is 1.2 ms ⁻¹	A1	2		
(iv)	- T _A -	$-2 = 0.5a$ and $T_A - 2.5 = 0.25a$	M1		For applying Newt particle P and subs	on's 2^{nd} law to stituting for T_A
	Decel	eration is 6 ms ⁻²	A1	2	a = -6 or d = 6	