Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	42

1 (i) (ii)	$\mathrm{DF}=22500 \div 18$ $\begin{aligned} & 22500 / 18-R=600 \times 1.4 \\ & R=410 \mathrm{~N} \end{aligned}$ Rate of working is 6150 W	B1 M1 A1 A1 B1 \uparrow	4 1	For using Newton's second law with 3 terms ft on incorrect R , i.e. $\mathrm{R} \times 15$
2 (i)	$\begin{aligned} & 1 / 20.5 \mathrm{~T}^{2}+0.75 \mathrm{~T}=10 \\ & {\left[\mathrm{~T}^{2}+3 \mathrm{~T}-40=0=(\mathrm{T}+8)(\mathrm{T}-5)\right]} \end{aligned}$ $\mathrm{T}=5 \text { only }$	M1 A1 M1 A1	4	For using $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$ to obtain an equation in T from $\mathrm{s}_{\mathrm{AP}}+\mathrm{s}_{\mathrm{BP}}=10$ For solving the resulting 3 term quadratic equation either by factorising or formula and finding a value for T Reject/ignore $\mathrm{T}=-8$
	Alternative mark scheme for 2(i)			
(i) (ii)	$\begin{aligned} & x=1 / 21 / 2 \mathrm{~T}^{2} \quad 10-x=3 / 4 \mathrm{~T} \\ & \text { Eliminate } \mathrm{T} \\ & x=1 / 4[4 / 3(10-x)]^{2} \\ & x=6.25 \\ & 10-6.25=3 / 4 \mathrm{~T} \text { or } 6.25=1 / 4 \mathrm{~T}^{2} \\ & \mathrm{~T}=5 \end{aligned}$ Speed is $2.5 \mathrm{~ms}^{-1}$	M1 A1 M1 A1 B1 \uparrow	1	Set up an equation for x, the distance travelled by particle A Solve for x reject/ignore $x=16$ Substitute for x into either of the above equations Reject/ignore $\mathrm{T}=-5$ ft for speed $=0.5 \mathrm{~T}$
3	$\begin{aligned} & 0.8 \mathrm{~T}_{1}+0.96 \mathrm{~T}_{2}=10 \text { or } \\ & \mathrm{T}_{1} \cos 36.9+\mathrm{T}_{2} \cos 16.3=10 \\ & 0.6 \mathrm{~T}_{1}-0.28 \mathrm{~T}_{2}=0.7 \mathrm{~g} \text { or } \\ & \mathrm{T}_{1} \sin 36.9-\mathrm{T}_{2} \sin 16.3=0.7 \mathrm{~g} \\ & \mathrm{~T}_{1}=11.9 \quad \text { and } \quad \mathrm{T}_{2}=0.5 \end{aligned}$	M1 A1 M1 A1 M1 A1	6	For resolving forces acting on P horizontally (3 terms) For resolving forces acting on P vertically (3 terms) For solving simultaneous equations and finding both T_{1} and T_{2}

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2014	9709	42

4 (i) (ii)	$\begin{aligned} & a(t)=t^{1 / 3} / 3 \\ & {[0.25-(1 / 2) / 3=1 / 4-1 / 6]} \end{aligned}$ Decrease is $1 / 12 \mathrm{~ms}^{-2}$ $s_{2}=\int_{8}^{27} \frac{1}{2} t^{2 / 3} d t=\left[0.3 t^{5 / 3}\right]_{8}^{27}$ Distance is 71.3 m	M1 A1 M1 A1 B1 M1 A1	4	For differentiation to find $a(t)$ for $t \geqslant 8$ $\text { Decrease }=a\left(8^{-}\right)-a\left(8^{+}\right)$ AG $s_{1}=1 / 21 / 48^{2}=8$ Using definite integration to find s_{2} $s_{1}+s_{2}=71.3$
Alternative method for the final two marks				
	$\begin{aligned} & s=\int \frac{1}{2} t^{2 / 3} d t=0.3 t^{5 / 3}+c \\ & s(8)=8 \text { gives } c=-1.6 \\ & s(27)=0.3(27)^{5 / 3}-1.6=71.3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Using indefinite integration to find s and finding the constant of integration by using the value of s_{1} Finding $s(27)$
5 (i) (ii) (a) (b) (iii)	KE gain is $10.5 v^{2} \mathrm{~J}$ [PE Loss $=16(10) x-5(10) x \sin 30]$ PE loss by system is 135 x J $\begin{aligned} & \mathrm{R}=5(10) \times(\sqrt{ } 3 \div 2) \\ & \mathrm{F}=25 \end{aligned}$ Work done is $25 x \mathrm{~J}$ $\left[10.5 v^{2}=135 x-25 x\right]$ $21 v^{2}=220 x$	B1 M1 A1 B1 B1 B1§ M1 A1	1 2 2 3	For use of $\mathrm{PE}=\mathrm{mgh}$ and Loss by system $=$ loss by $\mathrm{B}-$ gain by A ft incorrect F For using 'Gain in $\mathrm{KE}=$ Loss in $\mathrm{PE}-$ WD against friction' AG
6 (i)	$v^{2}=2 \times g \times 7.2$ \rightarrow speed at surface is $12 \mathrm{~ms}^{-1}$ $\left[6^{2}=12^{2}+2 a \times 0.8\right]$ Deceleration is $67.5 \mathrm{~ms}^{-2}$ $[0.2 g-\mathrm{R}=-0.2 \times 67.5]$ $\mathrm{R}=15.5$	B1 M1 A1 M1 A1	5	For using $6^{2}=v^{2}+2 a s$ and finding a For using Newton's $2^{\text {nd }}$ law with three terms for P in the liquid

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	$\mathbf{4 2}$

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& {\left[3.6=1 / 2 a \times 4^{2}\right]} \\
\& a=0.45 \mathrm{~ms}^{-2} \\
\& {[\mathrm{~T}-\mathrm{R}-0.2 g=0.2 \times 0.45]}
\end{aligned}
\] \\
Tension is 17.6 N \\
(17.59 exact)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \({ }^{\wedge}\)
\end{tabular} \& 4 \& \begin{tabular}{l}
For using \(\mathrm{s}=0+1 / 2 \mathrm{at}^{2}\) and finding \(a\) \\
For using Newton's \(2^{\text {nd }}\) law with \(P\) in the liquid \\
ft incorrect R
\end{tabular} \\
\hline \multicolumn{5}{|c|}{Alternative Energy Method} \\
\hline (i)

(ii) \& \[
$$
\begin{aligned}
& 0.2 g \times 8=\mathrm{R}(0.8)+1 / 2(0.2) 6^{2} \\
& \mathrm{R}=15.5 \\
& 0.2 g-15.5=0.2 a \\
& a=-67.5 \\
& \\
& 3.6=v / 2 \times 4 \quad v=1.8 \\
& \mathrm{~T}(3.6)=\mathrm{R}(3.6)+0.2 g(3.6)+1 / 2(0.2) 1.8^{2} \\
& \mathrm{~T}=17.6 \mathrm{~N}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 5

4 \& | For using PE lost = WD by R in liquid +KE gain |
| :--- |
| Finding R |
| For using Newton's $2^{\text {nd }}$ law in the liquid |
| For using $s=(0+v) / 2 \times t$ to find v at surface of liquid |
| For using WD by $\mathrm{T}=\mathrm{WD}$ by $\mathrm{R}+\mathrm{PE}$ gain + KE gain | \\

\hline | 7 (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& {\left[\mathrm{T}_{\mathrm{A}}-2.5=0.25 \times a\right] \quad\left[7.5-\mathrm{T}_{\mathrm{B}}=0.75 \times a\right]} \\
& \mathrm{T}_{\mathrm{A}}=2.5+0.25 a \\
& \mathrm{~T}_{\mathrm{B}}=7.5-0.75 a \\
& \mathrm{~F}=0.4 \times 5 \\
& {\left[\mathrm{~T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}-\mathrm{F}=0.5 a\right]} \\
& \\
& 7.5-0.75 a-(2.5+0.25 a)-2=0.5 a \rightarrow a=2
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| B1 |
| M1 |
| A1 | \& 3

3 \& | For applying Newton's $2^{\text {nd }}$ law to either particle A or particle B |
| :--- |
| For using Newton's $2^{\text {nd }}$ law for P with friction and both tensions represented (4 terms) |
| AG | \\

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

	Alternative method for (ii)			
(ii)	$\mathrm{F}=0.4 \times 5$	B1		
	$a=2$ used to find $\mathrm{T}_{\mathrm{A}}=3, \mathrm{~T}_{\mathrm{B}}=6$ and used in $\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}-\mathrm{F}=0.5 \times a$	M1		Assume given value of a, find T_{A} and T_{B} and use the values in 4 term Newton's $2^{\text {nd }}$ law
	$a=2$	A1		Justify the value $a=2$
(iii)	[$\left.\nu^{2}=2 \times 2 \times 0.36\right]$	M1		For using $v^{2}=2 a s$ with $s=1-1 / 2(5.28-4)$
	Speed is $1.2 \mathrm{~ms}^{-1}$	A1	2	
(iv)	$-\mathrm{T}_{\mathrm{A}}-2=0.5 a$ and $\mathrm{T}_{\mathrm{A}}-2.5=0.25 a$	M1		For applying Newton's $2^{\text {nd }}$ law to particle P and substituting for T_{A}
	Deceleration is $6 \mathrm{~ms}^{-2}$	A1	2	$a=-6$ or $d=6$

