Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	41

1	$\begin{aligned} & \mathrm{DF}=28000 \\ & {[1330000=28000 \mathrm{~V}]} \\ & \mathrm{V}=47.5 \end{aligned}$	B1 M1 A1	[3]	For using $\mathrm{P}=(\mathrm{DF}) \mathrm{V}$
2 (i) (ii)	$\begin{aligned} & 2.4=0.25 \mathrm{~g} \cos \alpha \\ & \alpha=16.3 \\ & {[\mu=0.28 \div 0.96]} \end{aligned}$ Least possible value of μ is $7 / 24$ or 0.292	B1 B1 M1 A1	[2] [2]	For using $\mu=\mathrm{F} / \mathrm{R} \text { or } \mu=\tan \alpha$
3	$\begin{aligned} & X=5-7 \cos 60^{\circ}-3 \cos 30^{\circ} \quad(=-1.098) \\ & Y=7 \sin 60^{\circ}-3 \sin 30^{\circ}-4 \quad(=0.5622) \end{aligned}$ Resultant is 1.23 N and Direction is 152.9° anticlockwise from + ve x-axis oe	M1 A1 M1 A1 M1 A1	[6]	For finding the component of the forces in the x direction For finding the component of the forces in the y direction For using $\mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$ and $\tan \theta=\mathrm{Y} / \mathrm{X}$
4	For $\mathrm{s}=4.05$ Total distance $=4.05+(3.15+4.05)$ $=11.25 \mathrm{~m}$ $\mathrm{t}_{\text {upwards }}=0.9$ For downwards motion $(3.15+4.05)=\frac{1}{2} \mathrm{gt}^{2} \rightarrow \mathrm{t}=1.2$ Time taken is 2.1 s	M1 A1 B1 B1 B1 B1	[6]	For using $0=u^{2}-2 g$ for the upwards motion

9709 s14 ms 41

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	41

\begin{tabular}{|c|c|c|c|c|}
\hline \& Alternative Mark Scheme for final 3 marks
\[
\begin{aligned}
\& {\left[-3.15=9 \mathrm{~T}+\frac{1}{2}(-\mathrm{g}) \mathrm{T}^{2}\right]} \\
\& {\left[100 \mathrm{t}^{2}-180 \mathrm{t}-63=0\right]} \\
\& (10 \mathrm{~T}-21)(10 \mathrm{~T}+3)=0
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& \& \begin{tabular}{l}
For using \(\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}\) for the total displacement and time \\
For solving a quadratic equation for the total time T
\[
\mathrm{T}=2.1 \text { only }
\]
\end{tabular} \\
\hline \begin{tabular}{l}
5 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { KE gain }=550 v^{2} \\
\& \text { PE gain }=1000 x \\
\& {\left[1800 x=550 v^{2}+1000 x+700 x\right]} \\
\& k=5.5
\end{aligned}
\] \\
At A \(5.5 v^{2}=1760 \rightarrow v^{2}=320\)
\[
\begin{aligned}
\& 550\left(v^{2}-320\right)= \\
\& 1800(x-1760)-700(x-1760) \\
\& v^{2}=2 x-3200(\mathrm{cwo})
\end{aligned}
\] \\
Alternative for part (ii) \\
\(\left[1800-700=1100 a\right.\) and \(\left.5.5 v^{2}=1760\right]\)
\[
\begin{aligned}
\& a=1 \text { and } v^{2}=320 \\
\& {\left[v^{2}=320+2 \times 1 \times(x-1760)\right]}
\end{aligned}
\]
\[
v^{2}=2 x-3200
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1§ \\
B1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& [4]

[4]

[4] \& | ft for incorrect coeff(s) of v^{2} and/or of x |
| :--- |
| For using from A, KEgain= WD by DF -WD against R |
| AG |
| For applying Newton's 2nd Law to find acceleration along AB and for using $k v^{2}=x$ to find v^{2} at A |
| For using $v^{2}=u^{2}+2$ as for motion from A to B | \\

\hline $\begin{array}{ll}6 & \text { (i) } \\ \\ \\ & \\ \text { (ii) }\end{array}$ \& | Acceleration is $5 \mathrm{~ms}^{-2}$ |
| :--- |
| Distance is 0.9 m $\frac{1}{2} 0.6 \times \mathrm{V}=0.9 \rightarrow \mathrm{~V}=3$ $\mathrm{T}=0.9$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1^ |
| M1 |
| A1 | \& [4]

[3] \& | For using Newton's second law for both particles and eliminating T , or using $(M+m) a=(M-m) g$ |
| :--- |
| For using $\mathrm{s}=0+\frac{1}{2} \mathrm{at}^{2}$ |
| ft distance in (i) |
| For using $0=\mathrm{V}-\mathrm{g}(\mathrm{~T}-0.6)$ | \\

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	41

\begin{tabular}{|c|c|c|c|c|}
\hline (iii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& {\left[\mathrm{s}_{\mathrm{up}}=\frac{1}{2} 0.9 \times 3\right. \text { and }} \\
\& \left.\quad \mathrm{s}_{\mathrm{down}}=0+\frac{1}{2} \mathrm{~g}(1.6-0.9)^{2}\right]
\end{aligned}
\] \\
Distance upwards is 1.35 m and distance downwards is 2.45 m
\[
\mathrm{h}=1.1
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1^
\end{tabular} \& [3] \& \begin{tabular}{l}
For using area property in graph or equivalent \\
\(\mathrm{ft} \quad \mathrm{s}_{\text {down }}-\mathrm{s}_{\mathrm{up}}\)
\end{tabular} \\
\hline 7 (i) \& \begin{tabular}{l}
\[
\mathrm{AB}=3 \times 400+\frac{1}{2} 0.005 \times 400^{2}=1600 \mathrm{~m}
\] \\
(AG) \\
or
\[
\begin{aligned}
\& \mathrm{v}_{\mathrm{B}}=3+0.005 \times 400=5 \mathrm{~ms}^{-1} \\
\& \mathrm{v}_{\mathrm{B}}=3+0.005 \times 400=5 \mathrm{~ms}^{-1}
\end{aligned}
\] \\
or
\[
\mathrm{AB}=3 \times 400+\frac{1}{2} 0.005 \times 400^{2}=1600 \mathrm{~m}
\] \\
(AG)
\end{tabular} \& M1

A1

B1 \& [3] \& For using $\mathrm{s}=\mathrm{ut}+\frac{1}{2}$ at ${ }^{2}$ to find the distance $A B$, or for using $v=u+$ at to find P's speed at B \\

\hline (ii) \& $$
\begin{aligned}
& {\left[0.02 \mathrm{t}^{2}-0.0001 \mathrm{t}^{3} / 3+\mathrm{kt}\right]_{0}^{400}=1600} \\
& 400 \mathrm{k}=1600-0.02 \times 400^{2}+ \\
& 0.0001 \times 400^{3} \div 3 \rightarrow \\
& \mathrm{k}=4-8+16 / 3=4 / 3
\end{aligned}
$$ \& M1

A1

A1 \& \& For using $\int_{0}^{400} \mathrm{v}$ dt $=1600$ \\

\hline \multirow{4}{*}{(iii)} \& $$
\begin{aligned}
& {[\mathrm{dv} / \mathrm{dt}=0.04-0.0002 \mathrm{t}} \\
& \quad(=0 \text { when } \mathrm{t}=200) \\
& \mathrm{v}_{\max }=0.04 \times 200-0.0001 \times 200^{2}+4 / 3
\end{aligned}
$$ \& M1

A1^ \& \& | For differentiating and solving $\mathrm{dv} / \mathrm{dt}=0$ |
| :--- |
| ft incorrect k or incorrect value of t from $\mathrm{dv} / \mathrm{dt}=0$ | \\

\hline \& Maximum speed is $5.33 \mathrm{~ms}^{-1}$ \& $$
\begin{aligned}
& \text { A1 } \\
& \text { M1 }
\end{aligned}
$$ \& [6] \& For using constant speed $5 \mathrm{~ms}^{-1}=1400 / \mathrm{T}$ \\

\hline \& Time taken is 280 s

\[
\left[1400=4 / 3 \times 280+\frac{1}{2} 280^{2} a\right]

\] \& | A1 |
| :--- |
| M1 | \& \& For using $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$ to find a \\

\hline \& \& A1 \& [4] \& \\
\hline
\end{tabular}

