_							970	<u>9_s14_ms_41</u>
Pa		age 4 Mark Scheme					Syllabus	Paper
GCE A LEVEL – Ma			y/June 2	2014		9709	41	
1		DF = 2800	DF = 28000					
		[1330 000 = 28000V]		M1		For using $P = (DF)V$		
		V = 47.5		A1	[3]			
2	(i)	$2.4 = 0.25 g \cos \alpha$		B1				
		α = 16.3		B1	[2]			
	(ii)	$[\mu = 0.28 \div 0.96]$		M1		For usin $\mu = 1$	g F/R or $\mu = \tan \alpha$	
		Least poss is 7/24	sible value of μ l or 0.292	A1	[2]			
3			M1			For finding the component of the forces in the <i>x</i> direction		
		X = 5 - 7c	$\cos 60^\circ - 3\cos 30^\circ (= -1.098)$	A1				
				M1		For find the <i>y</i> dir	ing the componer ection	nt of the forces in
		$Y = 7\sin \theta$	$50^{\circ} - 3\sin 30^{\circ} - 4 (= 0.5622)$	A1				
				M1		For usin	$g R^2 = X^2 + Y^2 a r$	nd tan $\theta = Y/X$
		Resultant Direction +ve x-axis	is 1.23 N and is 152.9° anticlockwise from s oe	A1	[6]			
4				M1		For usin motion	$g 0 = u^2 - 2gs \text{ for}$	the upwards
		For $s = 4.0$	05	A1				
		Total dista = 11.2	ance = $4.05 + (3.15 + 4.05)$ 5 m	B1				
		$t_{upwards} = 0$.9	B1				
		For down	wards motion	B1				
		(3.15 + 4.	$05) = \frac{1}{2} \operatorname{gt}^2 \to t = 1.2$					
	Time tak		n is 2.1 s	B1	[6]			

Page 5		age 5	Mark Sche	Syllabus	Paper			
			GCE A LEVEL – May/June 2014				9709	41
	Alternative Mark Scheme for final 3 marks							
		$[-3.15 = 9T + \frac{1}{2} (-g) T^{2}]$		M1		For using $s = ut + \frac{1}{-}at^2$ for the total		
		2				displacement and time		
		$[100t^2 - 180t - 63 = 0]$		M1		For solving a quadratic equation for the total time T		
		(10T - 21)(10T + 3) = 0		A1		T = 2.1 only		
5	(i)	KE gain =	$550v^2$	B1				
		PE gain =	1000 <i>x</i>	B1				
		[1800x = 3]	$550v^2 + 1000x + 700x]$	M1				
	<i>k</i> = 5.5			A1√ [*]	[4]	ft for i of x	ncorrect coeff(s)	of v^2 and/or
	(ii)	At A 5.5v	$v^2 = 1760 \rightarrow v^2 = 320$	B1				
				M1		For usin DF –WI	g from A, KEgair D against R	n= WD by
		$550(v^2 - 3)$ 1800(x - 1)	20) = 1760) - 700(x - 1760)	A1				
		$v^2 = 2x - 3$	3200 (cwo)	A1	[4]	AG		
	Alternati [1800 – 70		ve for part (ii) $00 = 1100a$ and $5.5v^2 = 1760$]	M1		For appl acceleration $kv^2 = x$ to	ying Newton's 2r tion along AB ar o find v^2 at A	nd Law to find ad for using
	a = 1 and		$v^2 = 320$	A1				
		$[v^2 = 320$	(x - 1760)	M1		For usin A to B	$g v^2 = u^2 + 2as \text{ fo}$	r motion from
	$v^2 = 2x - 2$		3200	A1	[4]			
6	(i)			M1		For using Newton's second law for both particles and eliminating T, or using (M + m)a = (M - m)g		nd law for both Γ, or using
		Accelerati	on is $5 \mathrm{ms}^{-2}$	A1				
				M1		For usin	$g s = 0 + \frac{1}{2} at^2$	
		Distance i	s 0.9 m	A1	[4]	ft distance in (i)		
	(ii)	$\frac{1}{2} 0.6 \times V$	$V = 0.9 \rightarrow V = 3$	B1√^				
				M1		For using 0 = V - g(T - 0.6)		
		T = 0.9		A1	[3]			

				970	9 <u>s14_ms_4</u> 1			
	Pa	age 6	Mark Sche	Syllabus	Paper			
			y/June 2014			9709	41	
					1			
	(iii)	$[s_{up} = \frac{1}{2} \ 0.9 \times 3 \text{ and}$ $s_{down} = 0 + \frac{1}{2} \ g(1.6 - 0.9)^2]$		M1		For using area property in graph or equivalent		
		Distance u distanc	Distance upwards is 1.35 m and distance downwards is 2.45 m					
		h = 1.1		B1√^	[3]	ft s _{dow}		
7	(i)			M1		For using $s = ut + \frac{1}{2} at^2$ to find the		
						distance find P's	e AB, or for using speed at B	v = u + at to
		$AB = 3 \times$	$400 + \frac{1}{2} \ 0.005 \times 400^2 = 1600 \mathrm{m}$					
		(AG)	2					
		or $v_1 = 3 \pm 0$	$005 \times 400 = 5 \mathrm{ms}^{-1}$	A 1				
		$v_{\rm B} = 3 + 0$	$.005 \times 400 - 5 \text{ ms}^{-1}$	AI				
		$v_B = 3 + 0$ or	$.005 \times 400 = 5 \mathrm{ms}^{-1}$					
		$AB = 3 \times$	$400 + \frac{1}{2} \ 0.005 \times 400^2 = 1600 \mathrm{m}$	B1				
		(AG)			[3]	3]		
	(ii)			M1		For using $\int_0^{400} v dt = 1600$		
		$[0.02t^2 - 0]$	$0.0001t^3/3 + kt]_0^{400} = 1600$	A1				
		400k = 16	$00 - 0.02 \times 400^2 +$					
		0.0001×4 k = 4 - 8 -	$400^3 \div 3 \rightarrow + 16/3 = 4/3$	A1				
		$\int dv/dt = 0$.04 – 0.0002t			For diff	erentiating and so	lying $dv/dt = 0$
		(=0 w)	then $t = 200$)	M1			und 50	
		$v_{\text{max}} = 0.04$	$4 \times 200 - 0.0001 \times 200^2 + 4/3$	A1√ [™]		ft incom $dv/dt =$	ect k or incorrect	value of t from
		Maximum	speed is $5.33 \mathrm{ms}^{-1}$	A1	[6]			
(iii)		M1 For using constant speed 5 ms ⁻¹		$5 \mathrm{ms}^{-1} = 1400/\mathrm{T}$			
		Time take	n is 280 s	A1				
		[1400 = 4/	$(3 \times 280 + \frac{1}{2} \ 280^2 a]$	M1		For using $s = ut + \frac{1}{2} at^2$ to find		o find a
		a = 0.0262	2	A1	[4]			