Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

1 EITHER: State or imply non-modular inequality $(x+2 a)^{2}>(3(x-a))^{2}$, or corresponding quadratic equation, or pair of linear equations $(x+2 a)= \pm 3(x-a)$
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x
Obtain critical values $x=\frac{1}{4} a$ and $x=\frac{5}{2} a \quad$ A1
State answer $\frac{1}{4} a<x<\frac{5}{2} a$
OR: Obtain critical value $x=\frac{5}{2} a$ from a graphical method, or by inspection, or by solving a linear equation or inequality
Obtain critical value $x=\frac{1}{4} a$ similarly $\quad \mathrm{B} 2$
State answer $\frac{1}{4} a<x<\frac{5}{2} a$
[Do not condone \leqslant for $<$.]

2 Remove logarithms and obtain $5-\mathrm{e}^{-2 x}=\mathrm{e}^{\frac{1}{2}}$, or equivalent
Obtain a correct value for $\mathrm{e}^{-2 x}, \mathrm{e}^{2 x}, \mathrm{e}^{-x}$ or e^{x}, e.g. $\mathrm{e}^{2 x}=1 /\left(5-\mathrm{e}^{\frac{1}{2}}\right)$
Use correct method to solve an equation of the form $\mathrm{e}^{2 x}=a, \mathrm{e}^{-2 x}=a, \mathrm{e}^{x}=a$ or $\mathrm{e}^{-x}=a$ where $a>0$. [The M1 is dependent on the correct removal of logarithms.]
Obtain answer $x=-0.605$ only.

3 Use $\cos (A+B)$ formula to obtain an equation in $\cos x$ and $\sin x$
M1
Use trig formula to obtain an equation in $\tan x($ or $\cos x$ or $\sin x)$
M1
Obtain $\tan x=\sqrt{3}-4$, or equivalent (or find $\cos x$ or $\sin x$) A1
Obtain answer $x=-66.2^{\circ}$
A1
Obtain answer $x=113.8^{\circ}$ and no others in the given interval A1
[Ignore answers outside the given interval. Treat answers in radians as a misread ($-1.16,1.99$).] [The other solution methods are via $\cos x= \pm 1 / \sqrt{\left(1+(\sqrt{3}-4)^{2}\right)}$ and $\left.\sin x= \pm(\sqrt{3}-4) / \sqrt{\left(1+(\sqrt{3}-4)^{2}\right)}.\right]$

4 (i) State $\frac{\mathrm{d} x}{\mathrm{~d} t}=1-\sec ^{2} t$, or equivalent
Use chain rule
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=-\frac{\sin t}{\cos t}$, or equivalent
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Obtain the given answer correctly.
$\begin{array}{ll}\text { (ii) State or imply } t=\tan ^{-1}\left(\frac{1}{2}\right) & \text { B1 } \\ \text { Obtain answer } x=-0.0364 & \text { B1 }\end{array}$

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	32

5
(i) Differentiate $\mathrm{f}(x)$ and obtain $\mathrm{f}^{\prime}(x)=(x-2)^{2} \mathrm{~g}^{\prime}(x)+2(x-2) \mathrm{g}(x) \quad$ B1

Conclude that $(x-2)$ is a factor of $\mathrm{f}^{\prime}(x)$
B1
(ii) EITHER: Substitute $x=2$, equate to zero and state a correct equation, e.g. $32+16 a+24+4 b+a=0$

B1
Differentiate polynomial, substitute $x=2$ and equate to zero or divide by $(x-2)$ and equate constant remainder to zero M1*
Obtain a correct equation, e.g. $80+32 a+36+4 b=0 \quad$ A1
OR1: Identify given polynomial with $(x-2)^{2}\left(x^{3}+A x^{2}+B x+C\right)$ and obtain an equation in a and/or b

M1*
Obtain a correct equation, e.g. $\frac{1}{4} a-4(4+a)+4=3 \quad$ A1
Obtain a second correct equation, e.g. $-\frac{3}{4} a+4(4+a)=b \quad$ A1
OR2: Divide given polynomial by $(x-2)^{2}$ and obtain an equation in a and $b \quad$ M1*
Obtain a correct equation, e.g. $29+8 a+b+0 \quad$ A1
Obtain a second correct equation, e.g. $176+47 a+4 b=0 \quad$ A1
Solve for a or for b
M1(dep*)
Obtain $a=-4$ and $b=3$

6 (i) Use correct arc formula and form an equation in r and x
Obtain a correct equation in any form A1
Rearrange in the given form A1
(ii) Consider sign of a relevant expression at $x=1$ and $x=1.5$, or compare values of relevant expressions at $x=1$ and $x=1.5$
Complete the argument correctly with correct calculated values A1
(iii) Use the iterative formula correctly at least once

Obtain final answer 1.21
Show sufficient iterations to 4 d.p. to justify 1.21 to 2 d.p., or show there is a sign change in the interval $(1.205,1.215)$

7 (a) EITHER: Substitute and expand $(-1+\sqrt{5} \mathrm{i})^{3}$ completely

Obtain $a=-12$
A1
$\begin{array}{ll}\text { State that the other complex root is }-1-\sqrt{5} \mathrm{i} & \text { B1 }\end{array}$
OR1: State that the other complex root is $-1-\sqrt{5} \mathrm{i} \quad$ B1
$\begin{array}{ll}\text { State the quadratic factor } z^{2}+2 z+6 & \text { B1 }\end{array}$
Divide the cubic by a 3-term quadratic, equate remainder to zero and solve for
a or, using a 3-term quadratic, factorise the cubic and determine a
Obtain $a=-12 \quad$ A1
OR2: State that the other complex root is $-1-\sqrt{5 \mathrm{i}} \quad$ B1
$\begin{array}{ll}\text { State or show the third root is } 2 & \text { B1 }\end{array}$
Use a valid method to determine $a \quad$ M1
Obtain $a=-12 \quad$ A1
OR3: Substitute and use De Moivre to cube $\sqrt{6} \mathrm{cis}\left(114.1^{\circ}\right)$, or equivalent M1
Find the real and imaginary parts of the expression M1
Obtain $a=-12 \quad$ A1
$\begin{array}{ll}\text { State that the other complex root is }-1-\sqrt{5 \mathrm{i}} & \text { B1 }\end{array}$

Page 6	Mark Scheme	Syllabus	
	GCE A LEVEL - May/June 2014	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

(b) EITHER: Substitute $w=\cos 2 \theta+\mathrm{i} \sin 2 \theta$ in the given expression B1

Use double angle formulae throughout M1
Express numerator and denominator in terms of $\cos \theta$ and $\sin \theta$ only A1
Obtain given answer correctly A1
OR: Substitute $w=\mathrm{e}^{2 \mathrm{i} \theta}$ in the given expression B1
Divide numerator and denominator by $\mathrm{e}^{\mathrm{i} \theta}$, or equivalent M1
Express numerator and denominator in terms of $\cos \theta$ and $\sin \theta$ only A1
Obtain the given answer correctly

8 (i) Use product rule M1
Obtain derivative in any correct form A1
Differentiate first derivative using the product rule M1
Obtain second derivative in any correct form, e.g. $-\frac{1}{2} \sin \frac{1}{2} x-\frac{1}{4} x \cos \frac{1}{2} x-\frac{1}{2} \sin \frac{1}{2} x \quad$ A1
Verify the given statement A1
(ii) Integrate and reach $k x \sin \frac{1}{2} x+l \int \sin \frac{1}{2} x \mathrm{~d} x$

Obtain $2 x \sin \frac{1}{2} x-2 \int \sin \frac{1}{2} x \mathrm{~d} x$, or equivalent
Obtain indefinite integral $2 x \sin \frac{1}{2} x+4 \cos \frac{1}{2} x$
Use correct limits $x=0, x=\pi$ correctly M1 (dep*)
Obtain answer $2 \pi-4$, or exact equivalent

9 (i) State or imply $\frac{\mathrm{d} N}{\mathrm{~d} t}=k N(1-0.01 N)$ and obtain the given answer $k=0.02$
(ii) Separate variables and attempt integration of at least one side

Integrate and obtain term $0.02 t$, or equivalent
Carry out a relevant method to obtain A or B such that $\frac{1}{N(1-0.01 N)} \equiv \frac{A}{N}+\frac{B}{1-0.01 N}$, or equivalent
Obtain $A=1$ and $B=0.01$, or equivalent
Integrate and obtain terms $\ln N-\ln (1-0.01 N)$, or equivalent
Evaluate a constant or use limits $t=0, N=20$ in a solution with terms $a \ln N$ and $b \ln (1-0.01 N), a b \neq 0$
Obtain correct answer in any form, e.g. $\ln N-\ln (1-0.01 N)=0.02 t+\ln 25$
Rearrange and obtain $t=50 \ln (4 N /(100-N)$, or equivalent
(iii) Substitute $N=40$ and obtain $t=49.0$

Page 7	Mark Scheme	Syllabus	
	GCE A LEVEL - May/June 2014	$\mathbf{9 7 0 9}$	$\mathbf{~ P a p e r}$

10 (i) EITHER: State or imply $\overrightarrow{A B}$ and $\overrightarrow{A C}$ correctly in component form
Using the correct processes evaluate the scalar product $\overrightarrow{A B} \cdot \overrightarrow{A C}$, or equivalent M1 Using the correct process for the moduli divide the scalar product by the product of the moduli
Obtain answer $\frac{20}{21} \quad$ A1
$O R$: Use correct method to find lengths of all sides of triangle $A B C \quad$ M1
Apply cosine rule correctly to find the cosine of angle $B A C \quad$ M1
Obtain answer $\frac{20}{21}$
(ii) State an exact value for the sine of angle $B A C$, e.g. $\sqrt{41} / 21 \quad \mathrm{~B} 1 \sqrt{ }$

Use correct area formula to find the area of triangle $A B C \quad$ M1
Obtain answer $\frac{1}{2} \sqrt{41}$, or exact equivalent A1
[SR: Allow use of a vector product, e.g. $\overrightarrow{A B} \times \overrightarrow{A C}=-6 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ B1§. Using correct process for the modulus, divide the modulus by 2 M 1 . Obtain answer $\frac{1}{2} \sqrt{41} \mathrm{A1}$.]
(iii) EITHER: State or obtain $b=0$

Equate scalar product of normal vector and $\overrightarrow{B C}($ or $\overrightarrow{C B})$ to zero M1
Obtain $a+b-4 c=0($ or $a-4 c=0)$
A1
Substitute a relevant point in $4 x+z=d$ and evaluate $d \quad$ M1
Obtain answer $4 x+z=9$, or equivalent A1
OR1: Attempt to calculate vector product of relevant vectors, e.g. ($\mathbf{j}) \times(\mathbf{i}+\mathbf{j}-4 \mathbf{k}) \quad$ M1
Obtain two correct components of the product A1
Obtain correct product, e.g. $-4 \mathbf{i}-\mathbf{k} \quad$ A1
Substitute a relevant point in $4 x+z=d$ and evaluate $d \quad$ M1
Obtain $4 x+z=9$, or equivalent A1
OR2: Attempt to form 2-parameter equation for the plane with relevant vectors M1
State a correct equation, e.g. $\mathbf{r}=2 \mathbf{i}+4 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{j})+\mu(\mathbf{i}+\mathbf{j}-4 \mathbf{k}) \quad$ A1
State 3 equations in x, y, z, λ and $\mu \quad$ A1
Eliminate $\mu \quad$ M1
Obtain answer $4 x+z=9$, or equivalent A1
OR3: State or obtain $b=0 \quad$ B1
Substitute for B and C in the plane equation and obtain $2 a+c=d$ and
$3 a-3 c=d$ (or $2 a+4 b+c=d$ and $3 a+5 b-3 c=d)$
Solve for one ratio, e.g. $a: d \quad$ M1
Obtain $a: c: d$, or equivalent M1
Obtain answer $4 x+z=9$, or equivalent A1
OR4: Attempt to form a determinant equation for the plane with relevant vectors M1
State a correct equation, e.g. $\left|\begin{array}{ccc}x-2 & y-4 & z-1 \\ 0 & 1 & 0 \\ 1 & 1 & -4\end{array}\right|=0$
Attempt to use a correct method to expand the determinant M1
Obtain two correct terms of a 3-term expansion, or equivalent A1
Obtain answer $4 x+z=9$, or equivalent A1

