			9709)_s14_ms
Page 4	Mark S	cheme	Syllabus	Paper
	GCE A LEVEL -	May/June 2014	9709	32
EITHEI	State or imply non-modular ine	equality $(x+2a)^2 > (3(x-a)^2)$	$a))^2$, or corresponding	ing
	quadratic equation, or pair of linea	r equations $(x+2a) = \pm 3(x)$	(x-a)	B1
	Make reasonable solution attempt	at a 3-term quadratic, or so	olve two linear equation	ons
	for x	I ,	1	M1
	Obtain critical values $x = \frac{1}{4}a$ and	$x = \frac{5}{2}a$		A1
	State answer $\frac{1}{4}a < x < \frac{5}{2}a$			A1
OR:	Obtain critical value $x = \frac{5}{2}a$ from a	a graphical method, or by i	inspection, or by solvi	ng
	a linear equation or inequality			B1
	Obtain critical value $x = \frac{1}{4}a$ similar	·ly		B2
	State answer $\frac{1}{4}a < x < \frac{5}{2}a$			B1
	[Do not condone \leq for \leq .]			
Remove	logarithms and obtain $5 - e^{-2x} = e^{\frac{1}{2}}$, or equivalent		B1
Obtain a	correct value for e^{-2x} , e^{2x} , e^{-x} or	e^x , e.g. $e^{2x} = 1/(5 - e^{\frac{1}{2}})$		B1
Use cor	ect method to solve an equation of t	the form $e^{2x} = a$, $e^{-2x} = a$,	$e^x = a$ or $e^{-x} = a$	
where a	> 0. [The M1 is dependent on the co	orrect removal of logarithm	ns.]	M1
Obtain a	nswer $x = -0.605$ only.	-		A1

3	Use $cos(A + B)$ formula to obtain an equation in $cos x$ and $sin x$	M1	
	Use trig formula to obtain an equation in $\tan x$ (or $\cos x$ or $\sin x$)	M1	
	Obtain $\tan x = \sqrt{3} - 4$, or equivalent (or find $\cos x$ or $\sin x$)	A1	
	Obtain answer $x = -66.2^{\circ}$	A1	
	Obtain answer $x = 113.8^{\circ}$ and no others in the given interval	A1	5
	[Ignore answers outside the given interval. Treat answers in radians as a misread (-1.16, 1.99).]		
	[The other solution methods are via $\cos x = \pm 1/\sqrt{(1 + (\sqrt{3} - 4)^2)}$ and		

$$\sin x = \pm (\sqrt{3} - 4) / \sqrt{(1 + (\sqrt{3} - 4)^2)} .$$

4	(i)	State $\frac{dx}{dt} = 1 - \sec^2 t$, or equivalent	B1	
		Use chain rule	M1	
		Obtain $\frac{dy}{dt} = -\frac{\sin t}{\cos t}$, or equivalent	A1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
		Obtain the given answer correctly.	A1	5

Obtain the given answer correctly.

(ii) State or imply
$$t = \tan^{-1}(\frac{1}{2})$$
B1Obtain answer $x = -0.0364$ B12

				970	9_s14_ms	32
	Pa	ge 5	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – May/June 2014	9709	32	
5	(i)	Differenti	ate $f(x)$ and obtain $f'(x) = (x - 2)^2 \sigma'(x) + 2(x - 2)\sigma(x)$		B1	
C	(1)	Conclude	that $(x - 2)$ is a factor of $f'(x)$		B1	2
		Conclude			DI	-
	(ii)	EITHER:	Substitute $x = 2$, equate to zero and state a correct equation	1,		
			e.g. $32 + 16a + 24 + 4b + a = 0$		B1	
			Differentiate polynomial, substitute $x = 2$ and equate to $(x = 2)$ and equate constant remainder to zero.	o zero or divide	by M1*	
			(x-2) and equate constant remainder to zero Obtain a correct equation $a = 80 + 32a + 36 + 4b = 0$			
		OR1.	Identify given polynomial with $(r-2)^2(r^3+4r^2+Br+6r^2)$	γ) and obtain an	AI	
		ORI.	equation in a and/or b		M1*	
			Obtain a correct equation, e.g. $\frac{1}{4}a - 4(4+a) + 4 = 3$		A1	
			Obtain a second correct equation $e^{\alpha} - \frac{3}{4}a + 4(4 + a) = b$		A1	
		002.	Divide given polynomial by $(x - 2)^2$ and obtain an equation	on in a and h	M1*	
		OK2	Divide given polynomial by $(x - 2)$ and obtain an equation Obtain a correct equation $a = 20 + 8a + b + 0$	on in a and b		
			Obtain a second correct equation, e.g. $29 + 8a + b + 0$ Obtain a second correct equation e.g. $176 + 47a + 4b = 0$		A1 A1	
		Solve for	<i>a</i> or for <i>b</i>		M1(dep*)	
		Obtain a =	= -4 and $b = 3$		Al	5
6	(i)	Use corre	et are formula and form an equation in r and r		M1	
U	(1)	Obtain a c	correct equation in any form		A1	
		Rearrange	e in the given form		A1	3
	(••	a .1		1 6 1		
	(11)	consider	sign of a relevant expression at $x = 1$ and $x = 1.5$, or compares at $x = 1$ and $x = 1.5$	re values of relev	vant M1	
		Complete	the argument correctly with correct calculated values		A1	2
		1				
	(iii)	Use the it	erative formula correctly at least once		M1	
		Show suff	al answer 1.21 ficient iterations to 4 d n to justify 1.21 to 2 d n or show the	here is a sign cha	Al	
		in the inte	rval (1.205,1.215)	liere is a sign cha	A1	3
7	(a)	EITHER:	Substitute and expand $(-1 + \sqrt{5} i)^3$ completely		M1	
			Use $i^2 = -1$ correctly at least once		M1	
			Obtain $a = -12$		A1	
			State that the other complex root is $-1 - \sqrt{5}$ i		B1	
		<i>OR1</i> :	State that the other complex root is $-1 - \sqrt{5}$ i		B1	
			State the quadratic factor $z^2 + 2z + 6$		B1	
			Divide the cubic by a 3-term quadratic, equate remainder	to zero and solve	tor M1	
			a of, using a 3-term quadratic, factorise the cubic and dete Obtain $a = -12$		A1	
		OR2:	State that the other complex root is $-1 - \sqrt{5i}$		B1	
		01121	State or show the third root is 2		B1	
			Use a valid method to determine a		M1	
			Obtain $a = -12$		A1	
		OR3:	Substitute and use De Moivre to cube $\sqrt{6}$ cis(114.1°), or ec	quivalent	M1	
			Find the real and imaginary parts of the expression Obtain $a = -12$		M1	
			State that the other complex rest is $1 \sqrt{5}$:		AI D1	А
			State that the other complex root is $-1 - \sqrt{31}$		Ы	4

		9709				
	Pa	ge 6	je 6 Mark Scheme Syllabus		Paper	
			GCE A LEVEL – May/June 2014	9709	32	
	(b)	EITHER:	Substitute $w = \cos 2\theta + i \sin 2\theta$ in the given expression		B1	
			Use double angle formulae throughout		M1	
			Express numerator and denominator in terms of $\cos\theta$ and	$\sin\theta$ only	A1	
			Obtain given answer correctly		A1	
		OR:	Substitute $w = e^{2i\theta}$ in the given expression		B1	
			Divide numerator and denominator by $e^{i\theta}$, or equivalent		M1	
			Express numerator and denominator in terms of $\cos\theta$ and	$\sin\theta$ only	A1	
			Obtain the given answer correctly		A1	4
8	(i)	Use produ	ict rule		M1	
		Obtain de	rivative in any correct form		A1	
		Differenti	ate first derivative using the product rule		M1	
		Obtain see	cond derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos\frac{1}{2}x$	$s\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$	A1	
		Verify the	e given statement		A1	5
	(ii)	Integrate	and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x dx$		M1*	
		Obtain 2x	$x\sin\frac{1}{2}x - 2\int\sin\frac{1}{2}xdx$, or equivalent		A1	
		Obtain ind	definite integral $2x \sin \frac{1}{2}x + 4 \cos \frac{1}{2}x$		A1	
		Use corre Obtain an	ct limits $x = 0$, $x = \pi$ correctly swer $2\pi - 4$, or exact equivalent		M1(dep*) A1	5
9	(i)	State or in	nply $\frac{dN}{dt} = kN(1 - 0.01N)$ and obtain the given answer $k = 0$	0.02	B1	1
	(ii)	Separate v	variables and attempt integration of at least one side		M1	
		Integrate a	and obtain term $0.02t$, or equivalent		Al	
		Carry out	a relevant method to obtain A or B such that $\frac{1}{N(1-0.01N)}$	$\equiv \frac{A}{N} + \frac{B}{1 - 0.01N}$	$\overline{}$, or	
		equivalen	t		M1*	
		Obtain A =	=1 and $B = 0.01$, or equivalent		A1	
		Integrate a	and obtain terms $\ln N - \ln(1 - 0.01N)$, or equivalent		A1√	
		Evaluate	a constant or use limits $t = 0$, $N = 20$ in a solution w	ith terms $a \ln N$	V and	
		$b\ln(1-0.$	$(01N), ab \neq 0$		M1(dep*)	
		Obtain co	rrect answer in any form, e.g. $\ln N - \ln(1 - 0.01N) = 0.02t +$	- ln 25	A1	
		Rearrange	e and obtain $t = 50 \ln(4N/(100 - N))$, or equivalent		A1	8
	(iii)	Substitute	N = 40 and obtain $t = 49.0$		B1	1

Decre 7		~~ 7	9709_s14_ms_3				
	Ра	ge / Mark Scheme Syllabus		Syllabus	Paper		
			GCE A LEVEL – May/June 2014	9709	32		
10	(i)	EITHER:	State or imply \overrightarrow{AB} and \overrightarrow{AC} correctly in component form		B1		
			Using the correct processes evaluate the scalar product \overrightarrow{AB}	\overrightarrow{AC} or equivalent	M1		
			Using the correct process for the moduli divide the sc	alar product by th	e		
			product of the moduli	r i i i i i j	M1		
			Obtain answer $\frac{20}{21}$		A1		
		$OR \cdot$	Use correct method to find lengths of all sides of triangle.	4RC	M1		
		011.	Apply cosine rule correctly to find the cosine of angle <i>BA</i> (C	M1		
			Obtain answer $\frac{20}{21}$		A1	4	
			21				
	(ii)	State an e	vact value for the sine of angle $BAC = g \sqrt{41/21}$		B1∱		
	(II)	Use corre	ct area formula to find the area of triangle ABC		M1		
		Obtain an	swer $\frac{1}{\sqrt{41}}$ or exact equivalent		A1	3	
			$\overrightarrow{1}$	DI A II		U	
		[SR: Allo	we use of a vector product, e.g. $AB \times AC = -6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	BI¥. Using correct	ct		
		process fo	or the modulus, divide the modulus by 2 M1. Obtain answer	$\frac{1}{2}\sqrt{41}$ A1.]			
	(iii)	EITHER:	State or obtain $b = 0$		B1		
			Equate scalar product of normal vector and \overrightarrow{BC} (or \overrightarrow{CB}) to	zero	M1		
			Obtain $a + b - 4c = 0$ (or $a - 4c = 0$)		A1		
			Substitute a relevant point in $4x + z = d$ and evaluate d		M1		
			Obtain answer $4x + z = 9$, or equivalent		A1		
		<i>OR</i> 1:	Attempt to calculate vector product of relevant vectors, e.g.	g. $(\mathbf{j}) \times (\mathbf{i} + \mathbf{j} - 4\mathbf{k})$	M1		
			Obtain two correct components of the product		Al		
			Obtain correct product, e.g. $-4\mathbf{l} - \mathbf{k}$ Substitute a relevant point in $4\mathbf{r} + z = d$ and evaluate d		Al M1		
			Obtain $4x + z = 9$, or equivalent		A1		
		<i>OR</i> 2:	Attempt to form 2-parameter equation for the plane with re-	elevant vectors	M1		
			State a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k} + \lambda(\mathbf{j}) + \mu(\mathbf{i} + \mathbf{j})$	$(-4\mathbf{k})$	A1		
			State 3 equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ		A1		
			Eliminate μ		M1		
		002.	Obtain answer $4x + z = 9$, or equivalent State or obtain $h = 0$		Al D1		
		UNS.	Substitute for <i>B</i> and <i>C</i> in the plane equation and obta	and 2a + c = d and	d DI		
			3a - 3c = d (or $2a + 4b + c = d$ and $3a + 5b - 3c = d$)		B1		
			Solve for one ratio, e.g. $a : d$		M1		
			Obtain $a : c : d$, or equivalent		M1		
			Obtain answer $4x + z = 9$, or equivalent		Al		
		OR4:	Attempt to form a determinant equation for the plane with $ x-2, y-4, z-1 $	relevant vectors	IMI I		
			State a correct equation, e.g. $\begin{vmatrix} 0 & 1 & 0 \end{vmatrix} = 0$		A1		
			Attempt to use a correct method to expand the determinant	t	M1		
			Obtain two correct terms of a 3-term expansion, or equiva	lent	A1		
			Obtain answer $4x + z = 9$, or equivalent		A1	5	