us	Paper

1 (i) State $\sin 2 \alpha=2 \sin \alpha \cos \alpha$ and $\sec \alpha=1 / \cos \alpha$
Obtain $2 \sin \alpha$
(ii) Use $\cos 2 \beta=2 \cos ^{2} \beta-1$ or equivalent to produce correct equation in $\cos \beta$

Solve three-term quadratic equation for $\cos \beta$
Obtain $\cos \beta=\frac{1}{3}$ only

2 State $\frac{\mathrm{d} u}{\mathrm{~d} x}=3 \sec ^{2} x$ or equivalent
Express integral in terms of u and $d u$ (accept unsimplified and without limits)
Obtain $\int \frac{1}{3} u^{\frac{1}{2}} \mathrm{~d} u$
Integrate $C u^{\frac{1}{2}}$ to obtain $\frac{2 C}{3} u^{\frac{3}{2}}$
Obtain $\frac{14}{9}$

3 Obtain $\frac{2}{2 t+3}$ for derivative of x
Use quotient of product rule, or equivalent, for derivative of y
Obtain $\frac{5}{(2 t+3)^{2}}$ or unsimplified equivalent
Obtain $t=-1$
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}$ in algebraic or numerical form M1

Obtain gradient $\frac{5}{2}$
A1
[6]

4 Separate variables correctly and recognisable attempt at integration of at least one side
Obtain $\ln y$, or equivalent
Obtain $k \ln \left(2+\mathrm{e}^{3 x}\right)$
Use $y(0)=36$ to find constant in $y=A\left(2+\mathrm{e}^{3 x}\right)^{k}$ or $\ln y=k \ln \left(2+\mathrm{e}^{3 x}\right)+c$ or equivalent $\quad \mathrm{M} 1^{*}$
Obtain equation correctly without logarithms from $\ln y=\ln \left(A\left(2+\mathrm{e}^{3 x}\right)^{k}\right)$
Obtain $y=4\left(2+e^{3 x}\right)^{2}$
A1

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	31

5 (i) Either Multiply numerator and denominator by $\sqrt{3}+i$ and use $i^{2}=-1$
Obtain correct numerator $18+18 \sqrt{3} \mathrm{i}$ or correct denominator 4
Obtain $\frac{9}{2}+\frac{9}{2} \sqrt{3} \mathrm{i}$ or $(18+18 \sqrt{3} \mathrm{i}) / 4$

Obtain $9 \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}$
OR Obtain modulus and argument of numerator or denominator, or both moduli or both arguments

A1

Obtain moduli and argument 18 and $\frac{1}{6} \pi$ or 2 and $-\frac{1}{6} \pi$ or moduli 18 and 2 or arguments $\frac{1}{6} \pi$ and $-\frac{1}{6} \pi$ (allow degrees)
Obtain $18 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}} \div 2 \mathrm{e}^{-\frac{1}{6} \pi \mathrm{i}}$ or equivalent
A1
Divide moduli and subtract arguments M1
Obtain $9 \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}$
(ii) State $3 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}$, following through their answer to part (i)

State $3 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i} \pm \frac{1}{2} \pi \mathrm{i}}$, following through their answer to part (i)
$B 1{ }^{\wedge}$
Obtain $3 \mathrm{e}^{-\frac{5}{6} \pi \mathrm{i}}$

6 (i) Use law for the logarithm for a product or quotient or exponentiation AND for a power
Obtain $(4 x-5)^{2}(x+1)=27 \quad$ B1
Obtain given equation correctly $16 x^{3}-24 x^{2}-15 x-2=0$
(ii) Obtain $x=2$ is root or $(x-2)$ is a factor, or likewise with $x=-\frac{1}{4}$

A1
[3]

Divide by $(x-2)$ to reach a quotient of the form $16 x^{2}+k x$
B1

Obtain quotient $16 x^{2}+8 x+1$
Obtain $(x-2)(4 x+1)^{2}$ or $(x-2),(4 x+1),(4 x+1)$
(iii) State $x=2$ only

7 (i) Obtain $2 x-3 y+6 z$ for LHS of equation
B1
Obtain $2 x-3 y+6 z=23$
B1
(ii) Either Use correct formula to find perpendicular distance

Obtain unsimplified value $\frac{ \pm 23}{\sqrt{2^{2}+(-3)^{2}+6^{2}}}$, following answer to (i)
Obtain $\frac{23}{7}$ or equivalent
A1

as	Paper
	$\mathbf{3 1}$

OR 1 Use scalar product of $(4,-1,2)$ and a vector normal to the plane
Use unit normal to plane to obtain $\pm \frac{(8+3+12)}{\sqrt{49}}$
Obtain $\frac{23}{7}$ or equivalent

Obtain $\mu=\frac{23}{49}$ [and $\left(\frac{46}{49},-\frac{69}{49}, \frac{138}{49}\right)$ as foot of perpendicular] Obtain distance $\frac{23}{7}$ or equivalent

Obtain $\frac{|23-k|}{7}=14$ or equivalent
Obtain $2 x-3 y+6 z=121$ and $2 x-3 y+6 z=-75$
OR Recognise that plane is $2 x-3 y+6 z=k$ and attempt to find at least one point on q using l with $\lambda= \pm 2$
Obtain $2 x-3 y+6 z=121$
Obtain $2 x-3 y+6 z=-75$

8 (i) Sketch $y=\operatorname{cosec} x$ for at least $0, x, \pi$
Sketch $y=x(\pi-x)$ for at least $0, x, \pi$
Justify statement concerning two roots, with evidence of 1 and $\frac{1}{4} \pi^{2}$ for y-values on graph via scales
(ii) Use $\operatorname{cosec} x=\frac{1}{\sin x}$ and commence rearrangement

Obtain given equation correctly, showing sufficient detail
(iii) (a) Use the iterative formula correctly at least once

Obtain final answer 0.66
Show sufficient iterations to 4 decimal places to justify answer or show a sign change in the interval $(0.655,0.665)$
(b) Obtain 2.48

A1

A1 A1
A1

B1

A1

A1

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	31

9 (i) Either State or imply partial fractions are of form $\frac{A}{3-x}+\frac{B}{1+2 x}+\frac{C}{(1+2 x)^{2}}$

Use any relevant method to obtain a constant
Obtain $A=1$ A1

Obtain $B=\frac{3}{2}$
Obtain $C=-\frac{1}{2}$

Use any relevant method to obtain a constant
Obtain $A=1$
Obtain $D=3$
Obtain $E=1$
(ii) Obtain the first two terms of one of the expansion of $(3-x)^{-1},\left(1-\frac{1}{3} x\right)^{-1}$
$(1+2 x)^{-1}$ and $(1+2 x)^{-2}$
Obtain correct unsimplified expansion up to the term in x^{2} of each partial fraction, following in each case the value of A, B, C

Obtain answer $\frac{4}{3}-\frac{8}{9} x+\frac{1}{27} x^{2}$
[If A, D, E approach used in part (i), give M1A1 1 A1 for the expansions, M1 for multiplying out fully and A1 for final answer]

10 (i) Use of product or quotient rule
Obtain $-5 \mathrm{e}^{-\frac{1}{2} x} \sin 4 x+40 \mathrm{e}^{-\frac{1}{2} x} \cos 4 x$
Equate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and obtain $\tan 4 z=k$ or $\mathrm{R} \cos (4 x \pm \alpha)$
Obtain $\tan 4 x=8$ or $\sqrt{65} \cos \left(4 x \pm \tan ^{-1} \frac{1}{8}\right)$
Obtain 0.362 or 20.7°
Obtain 1.147 or 65.7°
(ii) State or imply that x-coordinates of T_{n} are increasing by $\frac{1}{4} \pi$ or 45°

Attempt solution of inequality (or equation) of form $x_{1}+(n-1) k \pi .25$
Obtain $n>\frac{4}{\pi}(25-0.362)+1$, following through on their value of x_{1} $\mathrm{n}=33$

A1

B1
M1
A1 A1 A1

A1

