		9709_s14_					
	Page 4	Mark Scheme	Syllabus	Paper			
		GCE A LEVEL – May/June 2014	9709	31			
1	(i) State sint Obtain 2	$2\alpha = 2\sin\alpha\cos\alpha$ and $\sec\alpha = 1/\cos\alpha$ $\sin\alpha$]	B1 B1 [2]			
	(ii) Use cos2 Solve the	$\beta = 2\cos^2\beta - 1$ or equivalent to produce correct equation in correct equation for $\cos\beta$	osβ]	B1 M1			
	Obtain c	os $\beta = \frac{1}{3}$ only		A1 [3]			
2	State $\frac{\mathrm{d}u}{\mathrm{d}x} = 3\mathrm{s}$	$ec^2 x$ or equivalent]	B1			
	Express integ	ral in terms of u and du (accept unsimplified and without lin	nits)	M1			
	Obtain $\int \frac{1}{3}u^{\frac{1}{2}}$	du		A1			
	Integrate $Cu^{\frac{1}{2}}$	to obtain $\frac{2C}{3}u^{\frac{3}{2}}$]	M1			
	Obtain $\frac{14}{9}$		1	A1 [5]			
3	Obtain $\frac{2}{2t+3}$	for derivative of x]	B1			
	Use quotient	of product rule, or equivalent, for derivative of y]	M1			
	Obtain $\frac{5}{(2t+3)}$	$(3)^2$ or unsimplified equivalent	2	A1			
	Obtain $t = -1$]	B1			
	Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	$\frac{dx}{dt}$ in algebraic or numerical form]	M1			
	Obtain gradie	nt $\frac{5}{2}$,	A1 [6]			
4	Separate varia	ables correctly and recognisable attempt at integration of at le	east one side	M1			
	Obtain lny, or	equivalent]	B1			
	Obtain $k \ln(2$	$+e^{3x}$]	B1			
	Use $y(0) = 36$	to find constant in $y = A(2 + e^{3x})^k$ or $\ln y = k \ln(2 + e^{3x}) + c$	or equivalent	M1*			
	Obtain equati	on correctly without logarithms from $\ln y = \ln \left(A \left(2 + e^{3x} \right)^k \right)$:	*M1			
	Obtain $y = 4$	$(2+e^{3x})^2$		A1 [6]			

				970)9_s14_ms_31	
Page 5		ige 5	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – May/June 2014	9709		31
5	(i)	Either	Multiply numerator and denominator by $\sqrt{3} + i$ and use $i^2 =$	= -1	M1	
			Obtain correct numerator $18 + 18\sqrt{3}i$ or correct denominato	r 4	B1	
			Obtain $\frac{9}{2} + \frac{9}{2}\sqrt{3}i$ or $(18 + 18\sqrt{3}i)/4$		A1	
			Obtain modulus or argument		M1	
			Obtain $9e^{\frac{1}{3}\pi i}$		A1	[5]
		<u>OR</u>	Obtain modulus and argument of numerator or denominator moduli or both arguments	r, or both	M1	
			Obtain moduli and argument 18 and $\frac{1}{6}\pi$ or 2 and $-\frac{1}{6}\pi$			
			or moduli 18 and 2 or arguments $\frac{1}{6}\pi$ and $-\frac{1}{6}\pi$ (allow deg	grees)	B1	
			Obtain $18e^{\frac{1}{6}\pi i} \div 2e^{-\frac{1}{6}\pi i}$ or equivalent		A1	
			Divide moduli and subtract arguments		M1	
			Obtain $9e^{\frac{1}{3}\pi i}$		A1	[5]
			1			
	(ii)	State 3e	$e^{\frac{1}{6}\pi i}$, following through their answer to part (i)		B1√	
		State 3e	$\frac{1}{6} \frac{1}{2} \frac{\pi i \pm \frac{1}{2} \pi i}{5}$, following through their answer to part (i)		B1√ [^]	
		Obtain	$3e^{-\frac{-\pi}{6}\pi i}$			
					B1	[3]
6	(i)	Use law	for the logarithm for a product or quotient or exponentiation			
		AND fo	or a power		M1	
		Obtain ($(4x-5)^2(x+1) = 27$		B1	
		Obtain g	given equation correctly $16x^3 - 24x^2 - 15x - 2 = 0$		Al	[3]
	(ii)	Obtain 2	$x = 2$ is root or $(x - 2)$ is a factor, or likewise with $x = -\frac{1}{4}$		B1	
		Divide l	by $(x-2)$ to reach a quotient of the form $16x^2 + kx$		M1	
		Obtain	$(u - 2)(4u + 1)^2 = (u - 2)(4u + 1)(4u + 1)$		A 1	[4]
		Obtaint	(4x - 2)(4x + 1) or $(x - 2), (4x + 1), (4x + 1)$		AI	[4]
	(iii)	State <i>x</i> =	= 2 only		A1	[1]
7	(i)	Obtain $2x - 3y + 6z$ for LHS of equation			B1	
		Obtain 2	2x - 3y + 6z = 23		B1	[2]
	(ii)	Either	Use correct formula to find perpendicular distance $+22$		M1	
			Obtain unsimplified value $\frac{\pm 2.5}{\sqrt{2^2 + (-3)^2 + 6^2}}$, following ans	wer to (i)	A1√ [^]	
			Obtain $\frac{23}{7}$ or equivalent		A1	[3]

Pa	ae 6	Mark Scheme	Syllabus	$\frac{9709 \text{ s14} \text{ ms}}{\text{Paper}}$	
i age u		GCE A LEVEL – Mav/June 2014	9709	31	
			0.00		•
	<u>OR 1</u>	Use scalar product of $(4, -1, 2)$ and a vector normal to the p	olane	M1	
		Use unit normal to plane to obtain $\pm \frac{(8+3+12)}{\sqrt{49}}$		A1	
		Obtain $\frac{23}{7}$ or equivalent		A1	[3]
	<u>OR 2</u>	Find parameter intersection of p and $\mathbf{r} = \mu (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$		M1	
		Obtain $\mu = \frac{23}{49}$ [and $\left(\frac{46}{49}, -\frac{69}{49}, \frac{138}{49}\right)$ as foot of perpendicu	ılar]	A1	
		Obtain distance $\frac{23}{7}$ or equivalent		A1	[3]
(iii)	Either	Recognise that plane is $2x - 3y + 6z = k$ and attempt use of a perpendicular distance to plane at least once	formula for	M1	
		Obtain $\frac{ 23-k }{7} = 14$ or equivalent		A1	
	OR	Obtain $2x - 3y + 6z = 121$ and $2x - 3y + 6z = -75$ Recognise that plane is $2x - 3y + 6z = k$ and attempt to find	at least one	A1	[3]
	<u>on</u>	point on <i>q</i> using <i>l</i> with $\lambda = \pm 2$		M1	
		Obtain $2x - 3y + 6z = 121$		A1	
		Obtain 2x - 3y + 6z = -75		A1	[3]
0 (*)	C11-	for at least 0		D1	
8 (I)	Sketch y	$y = \operatorname{cosec} x$ for at least 0, x, π		BI D1	
	Sketch $y = x(\pi - x)$ for at least 0, x, π Justify statement concerning two roots, with evidence of 1 and $\frac{1}{4}\pi^2$ for y-values		for <i>y</i> -values	BI	
on graph via scales		aph via scales		B1	[3]
(ii)	Use cos	$ecx = \frac{1}{\sin x}$ and commence rearrangement		M1	
	Obtain g	given equation correctly, showing sufficient detail		A1	[2]
(iii)	(a) Use	e the iterative formula correctly at least once		M1	
()	Ob	tain final answer 0.66		Al	
	Sho	by sufficient iterations to 4 decimal places to justify answer of ign change in the interval (0.655, 0.665)	or show a	A1	[3]
	(b) Ob	tain 2.48		B1	[1]

Dawa 7				970	9_s1	<u>4 ms 31</u>
Page 7		ige /		Syllabus	Paper	
			GUE A LEVEL – May/June 2014	9709		31
9	(i)	<u>Either</u>	State or imply partial fractions are of form $\frac{A}{3-x} + \frac{B}{1+2x} + \frac{B}{1+2x}$	$\frac{C}{\left(1+2x\right)^2}$	B1	
			Use any relevant method to obtain a constant		M1	
			Obtain $A = 1$		A1	
			Obtain $B = \frac{3}{2}$		A1	
			Obtain $C = -\frac{1}{2}$		A1	[5]
		<u>Or</u>	State or imply partial fractions are of form $\frac{A}{3-x} + \frac{Dx+E}{(1+2x)^2}$		B1	
			Use any relevant method to obtain a constant		M1	
			Obtain A = 1		A1	
			Obtain $D = 3$		A1	
			Obtain $E = 1$		A1	[5]
	(ii)) Obtain the first two terms of one of the expansion of $(3-x)^{-1}$, $\left(1-\frac{1}{3}x\right)^{-1}$				
		$(1+2x)^{-1}$ and $(1+2x)^{-2}$			M1	
		Obtain co follow	Obtain correct unsimplified expansion up to the term in x^2 of each pa following in each case the value of <i>A</i> , <i>B</i> , <i>C</i>		A1√	
					A1√ A1√	
		Obtain a	nswer $\frac{4}{3} - \frac{8}{9}x + \frac{1}{27}x^2$		A1	[5]
		[If A, D, multip	<i>E</i> approach used in part (i), give M1A1 $\sqrt[4]{A1}$ for the expans lying out fully and A1 for final answer]	sions, M1 for		
10	(i)	Use of p	roduct or quotient rule		M1	
		Obtain -	$-5e^{-\frac{1}{2}x}\sin 4x + 40e^{-\frac{1}{2}x}\cos 4x$		A1	
		Equate $\frac{a}{a}$	$\frac{dy}{dx}$ to zero and obtain $\tan 4z = k$ or R $\cos(4x \pm \alpha)$		M1	
		Obtain ta	$\sin 4x = 8 \text{ or } \sqrt{65} \cos \left(4x \pm \tan^{-1} \frac{1}{8} \right)$		A1	
		Obtain 0	.362 or 20.7°		A1	[6]
			.17/ 01 0.1/		ЛІ	[U]
	(ii)	State or i	mply that <i>x</i> -coordinates of T_n are increasing by $\frac{1}{4}\pi$ or 45°		B1	
		Attempt	solution of inequality (or equation) of form $x_1 + (n-1)k\pi$. 2	25	M1	
		Obtain n	$x > \frac{4}{\pi} (25 - 0.362) + 1$, following through on their value of x_1		A1√	
		n = 33			A1	[4]