	Page 4		Mark Scheme	Syllabus	9 <u>s14 ms</u> Paper	
		-	GCE AS LEVEL – May/June 2014	9709	23	
1	(i) <u>Ei</u>	ither	Square both sides to obtain linear equation		M1	
	()	<u> </u>	Obtain $x = \frac{165}{30}$ or $\frac{33}{6}$ or $\frac{11}{2}$		A1	[2]
	O	<u>r</u>	Solve linear equation in which, initially, signs of x are different	ent	M1	
			Obtain $x + 2 = -x + 13$ or equivalent and hence $\frac{11}{2}$ or equivalent	llent	A1	[2]
	(ii) Aj	pply lo	garithms and use power law		M1	
	O	btain y	$y \log 3 = \log \frac{11}{2}$ and hence $y = 1.55$		A1	[2]
2	Use sin	$n 2\theta = 2$	$2\sin\theta\cos\theta$		B1	
	Simplify to obtain form $c_1 \sin^2 \theta = c_2$ or equivalent					
			one value of θ from equation of form $\sin \theta = k$		M1	
	Obtain	35.3° a	and 144.7°		A1	[4]
	(a) In	itegrate	to obtain form $k\sin(\frac{1}{3}x+2)$ where $k \neq 4$		M1	
	O	btain 1	$2\sin(\frac{1}{3}x+2) (+c)$		A1	[2]
	(b) St	tate or i	mply correct y-values 2, $\sqrt{20}$, $\sqrt{68}$, $\sqrt{148}$		B1	
			ect formula, or equivalent, with $h = 4$ and four <i>y</i> -values		M1	
	O	btain 7	9.2		A1	[3]
	Obtain	$\frac{\mathrm{d}x}{\mathrm{d}x} = -$	2		B1	
	Obtain	$\frac{\mathrm{d}y}{\mathrm{d}t} = 4$	$4e^t$		B1	
	Use $\frac{dy}{dx}$	$\frac{y}{r} = \frac{dy}{dt}$	$\sqrt{\frac{\mathrm{d}x}{\mathrm{d}t}}$ with $t = 0$ to find gradient		M1	
			u,			
	Obtain Form e	A1				
	ronne	quation	n of tangent through $(0, 4)$ with numerical gradient obtained		M1	
	Obtain	2x-y	v + 4 = 0 or equivalent of required form		A1	[6]
	State o	r imply	$y \ln y = \ln K + px \ln 2$		B1	
			t one of		DI	
	1.87 =	$\ln K +$	1.35 $p \ln 2$, 3.81 = ln K + 3.35 $p \ln 2$, $p \ln 2 = \frac{3.81 - 1.87}{3.35 - 1.35}$			
	or equi	ivalents	3		B1	
		-	n(s) to find one constant, dependent on previous B1		M1	
	Obtain Substit	•			A1 DM1	
			attempt value of K = 0.5605 and hence $K = 1.75$		DM1 A1	[6]
						r ~]

Page 5		ge 5	Mark Scheme	9709 Syllabus	<u>s14_m</u> Pape i	
		J	GCE AS LEVEL – May/June 2014	9709	23	
6	(i)	Substitute Obtain <i>a</i>	e -2 and equate to zero, or divide and equate remainder to z = 12			[2]
	(ii)	Obtain x^2 Calculate	division, or equivalent, at least as far as x^2 and x terms in $a^2 - 2x + 6$ discriminant of a 3 term quadratic quotient (or equivalent)	quotient	M1 A1 DM1	
			20 (or equivalent) by referring to, or implying, root -2 and no root from quad	ratic factor	A1 A1	[5]
7	(i)	-	to obtain $ke^{3x} + mx^3$		M1	
			th limits to obtain $\frac{1}{6}e^{3a} + \frac{1}{3}a^3 - \frac{1}{6} = 10$ or equivalent		A1	
		-	e to form involving natural logarithm		DM1	
		Obtain <i>a</i>	$=\frac{1}{3}\ln(61-2a^3)$ with no errors seen (AG)		A1	[4]
	(ii)	Consider	sign of $a - \frac{1}{3}\ln(61 - 2a^3)$ for 1.0 and 1.5 or equivalent		M1	
		Obtain –0	0.36 and 0.17 or equivalent and justify conclusion		A1	[2]
	(iii)		ion process correctly at least once		M1	
			nal answer 1.343 ficient iterations to 5 decimal places to justify answer or sho	w a sign	A1	
			the interval (1.3425, 1.3435)	w u sign	A1	[3]
8	(i)	Different	iate using product rule		M1	
		Obtain se	$e^2 x \cos 2x - 2 \tan x \sin 2x$		A1	
			$2x = 2\cos^2 x - 1$ or $\sin 2x = 2\sin x \cos x$ or both		B1	
		-	lerivative in terms of sec x and cos x only		M1	
		Obtain 4	$\cos^2 x - \sec^2 x - 2$ with no errors seen (AG)		A1	[5]
	(ii)		$\cos^4 x - 2\cos^2 x - 1 = 0$		B1	
			adratic formula to a 3 term quadratic equation in terms of	$\cos^2 x$ to find the	ne least pos	sitive
		value of o			M1	
		Obtain or	imply $\cos^2 x = \frac{1+\sqrt{5}}{4}$ or 0.809		A1	
		Obtain 0.4			A1	[4]