Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - May/June 2014	9709	23

1 (i) Either Square both sides to obtain linear equation M1
Obtain $x=\frac{165}{30}$ or $\frac{33}{6}$ or $\frac{11}{2} \quad$ A1
Or Solve linear equation in which, initially, signs of x are different M1 Obtain $x+2=-x+13$ or equivalent and hence $\frac{11}{2}$ or equivalent A1
(ii) Apply logarithms and use power law M1 A1

2 Use $\sin 2 \theta=2 \sin \theta \cos \theta \quad$ B1
Simplify to obtain form $c_{1} \sin ^{2} \theta=c_{2}$ or equivalent M1
Find at least one value of θ from equation of form $\sin \theta=k \quad$ M1
Obtain 35.3° and 144.7°

3 (a) Integrate to obtain form $k \sin \left(\frac{1}{3} x+2\right)$ where $k \neq 4$
Obtain $12 \sin \left(\frac{1}{3} x+2\right) \quad(+c)$
(b) State or imply correct y-values $2, \sqrt{20}, \sqrt{68}, \sqrt{148}$

Use correct formula, or equivalent, with $h=4$ and four y-values M1
Obtain 79.2 A1
$4 \quad$ Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2}{t+1}$
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=4 e^{t}$
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}$ with $t=0$ to find gradient
Obtain 2
Form equation of tangent through $(0,4)$ with numerical gradient obtained from attempt to differentiate
Obtain $2 x-y+4=0$ or equivalent of required form A1

5 State or imply $\ln y=\ln K+p x \ln 2$
Obtain at least one of

$$
1.87=\ln K+1.35 p \ln 2, \quad 3.81=\ln K+3.35 p \ln 2, \quad p \ln 2=\frac{3.81-1.87}{3.35-1.35}
$$

or equivalentsB1

Solve equation(s) to find one constant, dependent on previous B1 M1
Obtain $p=1.40$
Substitute to attempt value of K
Obtain $\ln K=0.5605$ and hence $K=1.75$

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS LEVEL - May/June 2014	9709	23

6 (i) Substitute -2 and equate to zero, or divide and equate remainder to zero $\begin{array}{r}\text { M1 } \\ \text { Obtain } a=12\end{array}$
Obtain $a=12$
(ii) Carry out division, or equivalent, at least as far as x^{2} and x terms in quotient M1
Obtain $x^{2}-2 x+6$
Calculate discriminant of a 3 term quadratic quotient (or equivalent) DM1
Obtain -20 (or equivalent)
Conclude by referring to, or implying, root -2 and no root from quadratic factor

7 (i) Integrate to obtain $k \mathrm{e}^{3 x}+m x^{3}$
Apply both limits to obtain $\frac{1}{6} \mathrm{e}^{3 a}+\frac{1}{3} a^{3}-\frac{1}{6}=10$ or equivalent A1
Rearrange to form involving natural logarithm DM1
Obtain $a=\frac{1}{3} \ln \left(61-2 a^{3}\right)$ with no errors seen (AG)
(ii) Consider sign of $a-\frac{1}{3} \ln \left(61-2 a^{3}\right)$ for 1.0 and 1.5 or equivalent M1

Obtain -0.36 and 0.17 or equivalent and justify conclusion
A1
(iii) Use iteration process correctly at least once

Obtain final answer 1.343
Show sufficient iterations to 5 decimal places to justify answer or show a sign change in the interval $(1.3425,1.3435)$

8 (i) Differentiate using product rule
Obtain $\sec ^{2} x \cos 2 x-2 \tan x \sin 2 x$
Use $\cos 2 x=2 \cos ^{2} x-1$ or $\sin 2 x=2 \sin x \cos x$ or both
Express derivative in terms of $\sec x$ and $\cos x$ only M1
Obtain $4 \cos ^{2} x-\sec ^{2} x-2$ with no errors seen (AG)
(ii) State $4 \cos ^{4} x-2 \cos ^{2} x-1=0$

Apply quadratic formula to a 3 term quadratic equation in terms of $\cos ^{2} x$ to find the least positive value of $\cos ^{2} x$
Obtain or imply $\cos ^{2} x=\frac{1+\sqrt{5}}{4}$ or $0.809 \ldots$
Obtain 0.45

