				9709	<u>s14</u> m	<u>s 2</u> 1
Page		ige 4	Mark Scheme	Syllabus	Paper	
			GCE AS LEVEL – May/June 2014	9709	21	
1	Fith	her State	e or imply non-modular inequality $(3x-2)^2 > (x+4)^2$ or co	rresponding equati	on	
1		or pa	for imply non-modular inequality $(3x - 2) \neq (x + 1)$ of co-	responding equality	B1	
		Atter	mpt solution of 3-term quadratic equation or of 2 linear equation	ations	M1	
		Obta	in critical values $-\frac{1}{2}$ and 3		A1	
		State	e answer $x < -\frac{1}{2}, x > 3$		A1	[4]
	<u>Or</u>	Obta	in critical value $x = 3$ from graphical method, inspection, ec	juation	B1	
		Obta	in critical value $x = -\frac{1}{2}$ similarly		B2	
		State	e answer $x < -\frac{1}{2}, x > 3$		B1	[4]
2	(i)	Different	iate to obtain form $k_1 \cos x + k_2 \sec^2 2x$		M1	
	()	Obtain co	prrect second term $2 \sec^2 2x$		A 1	
		Obtain 3	$\cos x + 2 \sec^2 2x$ and hence answer 5		Δ1	[3]
			2522 + 2522 = 2x and hence answer 5		AI	[3]
	(ii)	Different	iate to obtain form $ke^{2x}(1+e^{2x})^{-2}$		M1	
		Obtain co	prrect $-12e^{2x}(1+e^{2x})^{-2}$ or equivalent (may be implied)		A1	
		Obtain –3	}		A1	[3]
		51.11			2	
3	(1)	Divide at	least as far as x term in quotient, use synthetic division corr	ectly or make use of	of M1	
		Obtain at	$r_{\rm least} 6r^2 - r$		Δ 1	
		Obtain qu	notient $6x^2 - x - 2$ and confirm remainder is 7 (AG)		A1	[3]
	((2, 1)(2, 2, 1, 2)			
	(ii)	State equa	ation in form $(x^2 - 4)(6x^2 + kx - 2) = 0$, any constant k		2.61	
		(may be 1	mplied) $(2 - 2 - 1)^2$		MI	
		Obtain tw	70 of the roots $-2, 2, -\frac{1}{2}, \frac{2}{3}$		Al	503
		Obtain re	maining two roots and no others		Al	[3]
4	(i)	Sketch sl	howing the correct shape of each. $v = 3\ln x$ and $v = 15 - x^3$		B1	
•	(1)	Indicate t	he correct intercents (1.0) and (0.15)		B1	
		Indicate of	one real root from two correct sketches		B1	[3]
	(ii)	Consider	sign of $3\ln x + x^3 - 15$ for 2.0 and 2.5 or equivalent		M1	
	(11)	Justify co	nclusion with correct calculations (-4.9 and 3.4 or equivalent	ents)	A1	[2]
	(iii)	Use the it	eration process correctly at least once		M1	
		Obtain fir	nal answer 2.319		A1	
		snow suf	al (2.3185, 2.3195)	ow a sign change in	ı Al	[3]
						L- J
5	(i)	Express le	eft-hand side as a single fraction		M1	
		Use sin 2	$\theta = 2\sin\theta\cos\theta$ at some point		B1	
		Complete	e proot with no errors seen (AG)		A1	[3]

					9709	9709 s14 ms 21		
	Pa	age 5		Mark Scheme	Syllabus	Paper		
				GCE AS LEVEL – May/June 2014	9709	21		
	(ii)	(a)	State	$e \frac{2}{\sin \frac{1}{4}\pi}$ or equivalent in $2\sqrt{2}$ or exact equivalent (dependent on first B1)		B1 B1	[2]	
		(b)	State Integ	e or imply $k \sin 2\theta$ for any k grate to obtain $-\frac{3}{2}\cos 2\theta$		B1 B1	[2]	
			Subs	titute both limits correctly to obtain 5		BI	[3]	
6	(a)	Inte Obt Sub Use Cor	grate ain co stitute law f nfirm	to obtain form $k \ln(2x-7)$ prrect $3\ln(2x-7)$ e limits correctly (dependent on first M1) for logarithm of a quotient or power (dependent on first M1) ln125 following correct work and sufficient detail (AG)		M1 A1 DM1 DM1 A1	[5]	
	(b)	Eva Use Obt	luate j corre ain 13	y at (1), 5, 9, 13, 17 ct formula, or equivalent, with $h = 4$ and five y-values 3.5		M1 M1 A1	[3]	
7	(i)	Obt Obt Stat Sub For (dep Obt	ain $3y$ ain $2y$ e $4x$ - stitute m equ pender ain $5y$	$y + 3x \frac{dy}{dx}$ as derivative of $3xy$ $y \frac{dy}{dx}$ as derivative of y^2 $+ 3y + 3x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$ = 2 and -1 to find gradient of curve (dependent on at least on ation of tangent through $(2, -1)$ with numerical gradient int on previous M1) x + 4y - 6 = 0 or equivalent of required form	e B1)	B1 B1 M1 DM1 A1	[6]	
	(ii)	Use (dep Obt Sub Obt	$\frac{dy}{dx} = 0$ bender ain 4. stitute ain -	0 to find relation between x and y and on at least one B1 from part(i)) x + 3y = 0 or equivalent e for x or y in equation of curve $\frac{1}{8}y^2 = 3$ or $-\frac{2}{9}x^2 = 3$ or equivalent and conclude appropriat	ely	M1 A1 M1 A1	[4]	