Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - May/June 2014	9709	21

3 (i) Divide at least as far as x term in quotient, use synthetic division correctly or make use of an identity
Obtain at least $6 x^{2}-x$ A1
Obtain quotient $6 x^{2}-x-2$ and confirm remainder is 7 (AG)
(ii) State equation in form $\left(x^{2}-4\right)\left(6 x^{2}+k x-2\right)=0$, any constant k (may be implied)
Obtain two of the roots $-2,2,-\frac{1}{2}, \frac{2}{3}$ A1
Obtain remaining two roots and no others A1

4 (i) Sketch, showing the correct shape of each, $y=3 \ln x$ and $y=15-x^{3}$
Indicate the correct intercepts $(1,0)$ and $(0,15)$ B1
Indicate one real root from two correct sketches B1
(ii) Consider sign of $3 \ln x+x^{3}-15$ for 2.0 and 2.5 or equivalent M1

Justify conclusion with correct calculations (-4.9 and 3.4 or equivalents)
A1
(iii) Use the iteration process correctly at least once

Obtain final answer 2.319
Show sufficient iterations to 5 decimal places to justify answer or show a sign change in the interval ($2.3185,2.3195$)

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - May/June 2014	9709	21

$\begin{array}{ll}\text { (ii) (a) State } \frac{2}{\sin \frac{1}{4} \pi} \text { or equivalent } & \mathrm{B} 1 \\ & \text { Obtain } 2 \sqrt{2} \text { or exact equivalent (dependent on first B1) }\end{array} \quad \mathrm{B} 1$
(a) Integrate to obtain form $k \ln (2 x-7) \quad$ M1

Obtain correct $3 \ln (2 x-7)$ A1
Substitute limits correctly (dependent on first M1) DM1
Use law for logarithm of a quotient or power (dependent on first M1) DM1
Confirm $\ln 125$ following correct work and sufficient detail (AG)
(b) Evaluate y at (1), 5, 9, 13, 17 M1

Use correct formula, or equivalent, with $h=4$ and five y-values
Obtain 13.5

7 (i) Obtain $3 y+3 x \frac{\mathrm{~d} y}{\mathrm{dx}}$ as derivative of $3 x y \quad$ B1
Obtain $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $y^{2} \quad$ B1
State $4 x+3 y+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad$ B1
Substitute 2 and -1 to find gradient of curve (dependent on at least one B1) M1
Form equation of tangent through $(2,-1)$ with numerical gradient
(dependent on previous M1)
Obtain $5 x+4 y-6=0$ or equivalent of required form
(ii) Use $\frac{d y}{d x}=0$ to find relation between x and y (dependent on at least one B1 from part(i)) M1
Obtain $4 x+3 y=0$ or equivalent A1
Substitute for x or y in equation of curve M1
Obtain $-\frac{1}{8} y^{2}=3$ or $-\frac{2}{9} x^{2}=3$ or equivalent and conclude appropriately M1

