							9 <u>s14 ms</u> 12	
	Pag	Page 4 Mark Scheme GCE AS/A LEVEL – May/June 2014				Syllabus 9709	Paper 12	
			GCE AS/A LEVEL -	way/June 201	4	9709	12	
1	(2, 7) to (10, 3) Mid-point (6, 5) Gradient = $-\frac{1}{2}$ Perp gradient = 2 Eqn $y - 5 = 2(x - 6)$ Sets y to 0, $\rightarrow (3\frac{1}{2}, 0)$			B1 B1 M1 A1 [5]	co co Must be correct form of Perp co $x = 3\frac{1}{2}$ only is ok.			
2	`	$\left(\frac{x}{2} - \frac{4}{x}\right)^6$ in $x^2 = 1$	$5 \times \frac{1}{16} \times (-4)^2 = 15$	B1 B1	B1 unsin	nplified. B1 15.		
	Constant term = $20 \times \frac{1}{8} \times (-4)^3 = -160$ Coefficient of $x^2 = -145$			B1 B1 B1√ [≜] [5]	B1 unsimplified. B1 −160 Uses 2 terms. √ on previous answers			
3	reflex	x angle θ	is such that $\cos\theta = k$,					
			$= - \sqrt{(1-k^2)}$	B1 B1 [2]	(-) B1	rest B1		
	((b) Uses	$t=s/c \rightarrow \frac{-\sqrt{1-k^2}}{k}$	B1√^ [1]	√ for (i)	$\div k$.		
	2	2θ lies bet	quadrant. tween 540° and 720° egative in both these quadrants.	B1 B1 [2]	co co			
4		/2 /	$\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$ $\theta = \theta \rightarrow \mathbf{p} = 2.$	B1 B1	Correct e All ok –	equation. answer given.		
	((or from c Arc lengtl	$gth = 8sin1.2 \times 2 (14.9)$ cosine rule) $h = 2.4 \times 8 (19.2)$ = sum of these = 34.1	[2] M1 B1 A1 [3]	Needs ×2	2. Any method ok		
5			$\frac{\cos\theta}{+\sin\theta} = \tan\theta .$	M1	Correct a	addition of fraction	ns	
		LHS = $\frac{1}{c}$	$\frac{+s-c^{2}}{(1+s)} = \frac{s^{2}+s}{c(1+s)} = \frac{s}{c}$	M1M1	Use of s^2	$c^{2}+c^{2}=1.(1+s)$ can	celled.	
		$= \tan \theta$		A1 [4]	\rightarrow answe	C		
			$2 = 0$ ie $\tan \theta = -2$ 16.6° or 296.6°	M1 A1 A1√ ^k [3]		t (i). Allow $\tan\theta =$ or 180° + and no of e.		

	Page 5	Mark Scheme			9709 Syllabus	9_ <u>s14_ms_1</u> 2 Paper	
i aye J		GCE AS/A LEVEL – M		4	9709	12	
			- -	1			
6	(i) GP 8 AP 8	$\begin{array}{ccc} 8 r & 8r^2 \\ 8+8d & 8+20d \end{array}$					
	8r = 8 + 8a	d and $8r^2 = 8 + 20d$	B1 B1	B1 for each	ch equation.		
		$d \rightarrow 2r^2 - 5r + 3 = 0$	M1	Correct el	limination.		
	$\rightarrow r = 1.5$ (or 1)		A1	co (no penalty for including $r = 1$)			
	(ii) 4th term o If $r = 1.5$,	$f GP = ar^3 = 8 \times 27/8 = 27$ d = 0.5	[4] B1√	со			
	4th term o	M1A1 [3]	needs $a + 3d$ and correct method for d				
7	(i) (b – a).(b	$-\mathbf{c}) = \begin{pmatrix} -2\\ -1\\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3\\ 2\\ 4 \end{pmatrix}$	M1 M1	AB = b - a once $(a - b$ is ok) Use of x_1x_{2} with AB and CB			
	$\rightarrow -6 - 2$	$2+8 = 0 \rightarrow 90^{\circ}$	A1 [3]	All correc	et		
	(ii) Unit vecto	$\mathbf{r} = \frac{1}{3} \begin{pmatrix} 2\\1\\-2 \end{pmatrix}$	M1	Method fo	or unit vector.		
	$\mathbf{CD} = 12 \times$	\pm unit vector $= \pm \begin{pmatrix} 8\\4\\-8 \end{pmatrix}$	M1	Knows to	multiply by 12 c	or $\pm 4\mathbf{BA}$	
	$\mathbf{OD} = \mathbf{OC}$	$+ \mathbf{C}\mathbf{D} = \begin{pmatrix} 12\\9\\-2 \end{pmatrix}$	M1 A1 [4]	Correct m	nethod. co		
8	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2x - 1$						
	$\rightarrow \int \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	$x^2 - x + c$	B1	Correct in	ntegration (ignore	(c+c)	
	= 0 when $x = 3$		M1 A1	Uses a co	nstant of integrat	ion. co	
	$x^2 - x - 6 = 0$	when $x = -2$ (or 3)	A1	Puts dy/dx	e e		
	$\rightarrow \int y = \frac{1}{3}$	$x^3 - \frac{1}{2}x^2 - 6x$ (+k)	B1√B1√	√ first 2 t	erms, √ for <i>cx</i> .		
	= -10 when x = $\rightarrow k = 3^{1/2}$	=3	M1	Correct m	hethod for k		
	$\rightarrow y = 10\frac{5}{6}$		A1 [8]	Co –r 10.	8		

9709 s14 ms 12

Pa	ige 6	Mark Scheme			Syllabus	9 <u>s14_ms_12</u> Paper
		GCE AS/A LEVEL – May/June 2014			9709	12
				T		
	uλ Z	$(4-x)^{-\frac{1}{2}} \times -1$	B1 B1	Without	(-1). For (×-1).	
(ii) (iii)	Eqn $y = \frac{1}{2}$ $\rightarrow y = \frac{1}{2}$ Area undo Area undo	er curve = \int from 0 to 3 (58/3) er line = $\frac{1}{2}(5\frac{1}{2}+7)\times 3$ + $\frac{11x}{2}$ from 0 to 3	3 × B1 [5] M1A1 [2] M1 M1 M1 A1 [4]	÷(-1). E (n.b. thes (iii)) M1 unsit Use of li Correct n	8x" and $+c$ ". B1 for 31 for $\div(-1)$. se 5 marks can be mplified. A1 as y mits – needs use method raction. A1 co	gained in(ii) or = <i>mx</i> + <i>c</i>
	$x \mapsto 2x - 3$ $x \mapsto x^2 + 4$					
	(i) $ff = 2(2x - 3) - 3$ Solves = 11 $\rightarrow x = 5$ (or $2x-3=11, x = 7$. $2x-3=7 \rightarrow x = 5$) (ii) min at $x = -2$		M1 A1 [2]	Either fo equation	orms ff correctly, o s co	or solves 2
(II)	\rightarrow Range		M1 A1 [2]	Any vali	d method – could	be guesswork.
(iii)	$x^{2} + 4x - $ $\rightarrow x = 2 $ $\rightarrow x < - x$		M1 A1 A1	-	uadratic = $0 + 2$ so limits – even if >,	
(iv)	$\rightarrow 4x^2 - 4x^2$	$x - 3)^{2} + 4(2x - 3) = p$ 4x - 3 - p = 0 -4ac'' 16 = 16(-3 - p) 4	[3] B1 M1 A1	co unsim Use of d co	nplified iscriminant	
(v)	- 2		[3] B1 [1]	со		
(vi)	$y = (x + 2)$ $\sqrt{y + 4} =$ $h^{-1}(x) =$		B2,1 M1 A1 [4]		ach error order of operation x , not y . \pm left A0.	S