Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	11

$1 \quad a=1, b=2$	${ }_{[2]}$	Or $1+2 \sin x$
2 (i) $(2 x-3)^{2}-9$ (ii) $\begin{aligned} & 2 x-3>4 \quad 2 x-3<-4 \\ & x>3 \frac{1}{2} \text { (or) } x<-\frac{1}{2} \quad \text { cao } \\ & \text { Allow }-\frac{1}{2}>x>3 \frac{1}{2} \end{aligned}$ OR $\begin{aligned} & 4 x^{2}-12 x-7 \rightarrow(2 x-7)(2 x+1) \\ & x>3 \frac{1}{2}(\text { or })<-\frac{1}{2} \quad \text { cao } \\ & \text { Allow }-\frac{1}{2}>x>3 \frac{1}{2} \end{aligned}$	B1B1 A1 M1 A1 [2]	For - 3 and - 9 At least one of these statements Allow 'and' $3 \frac{1}{2}$, $-\frac{1}{2}$ soi scores first M1 Attempt to solve 3-term quadratic Allow 'and' $3 \frac{1}{2}$, $-\frac{1}{2}$ soi scores first M1
$3 \quad\left[{ }^{8} \mathrm{C}_{6} \text { or } 28\right] \times\left[16 \text { or } 4^{2}\right]\left(x^{6}\right) \times\left[\frac{1}{\left(64 \text { or } 2^{6}\right)\left(x^{6}\right)}\right]$	B1B1B1 B1 [4]	Seen in expansion ok. Allow ${ }^{8} \mathrm{C}_{2}$ Identified as answer
$4 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left[-2 \times 4(3 x+1)^{-3}\right] \times[3]$ When $x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3$ When $x=-1, y=1$ soi $y-1=3(x+1)(\rightarrow y=3 x+4)$	B1B1 B1 B1 B1 ~ [5]	$\left[-2 \times 4 u^{-3}\right] \times[3]$ is B 0 B 1 unless resolved Ft on their ' 3 ' only (not $-\frac{1}{3}$). Dep on diffn
5 (i) $200 / 2(2 a+199 d)=4 \times 100 / 2(2 a+99 d)$ $d=2 a \quad \text { cao }$ (ii) $a+99 d=a+99 \times 2 a$ 199a cao	$\begin{array}{ll} \text { M1A1 } \\ & \\ \text { A1 } & \\ & {[3]} \\ \text { M1 } & \\ \text { A1 } & \\ {[2]} \end{array}$	Correct formula used (once) M1, correct eqn A1 Sub. their part(i) into correct formula
6 (i) area $\Delta=\frac{1}{2} \times 4 \times 4 \tan \alpha$ oe soi Area sector $=\frac{1}{2} \times 2^{2} \alpha \quad$ oe soi Shaded area $=8 \tan \alpha-2 \alpha$ cao (ii) $D C=\frac{4}{\cos \alpha}-2$ oe soi Arc $D E=2 \alpha \quad$ soi anywhere provided clear Perimeter $=\frac{4}{\cos \alpha}+4 \tan \alpha+2 \alpha \quad$ cao	B1 B1 B1 [3] B1 B1 B1 [3]	$4 \tan \alpha=\sqrt{16 / \cos ^{2} \alpha-16}$. (Can also score in answer) Accept θ throughout Little/no working - accept terms in answer $\frac{4}{\cos \alpha}=\sqrt{16+16 \tan ^{2} \alpha}$. Can score in answer Little/no working - accept terms in answer

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2014	9709	11

$\begin{array}{\|l} 7 \\ (a-3)^{2}+(2-b)^{2}=125 \quad \text { oe } \\ \frac{2-b}{a-3}=2 \quad \text { oe } \\ \left.(a-3)^{2}+(2 a-6)^{2}=125 \quad \text { (sub for } a \text { or } b\right) \\ \begin{array}{l} (5)(a+2)(a-8)(=0) \quad \text { Attempt factorise/solve } \\ a=-2 \text { or } 8, \quad b=12 \text { or }-8 \end{array} \end{array}$	B1 B1 M1 M1 A1A1 [6]	Or $1 / 4(2-b)^{2}+(2-b)^{2}=125$ Or $(5)(b-12)(b+8)(=0)$ Answers (no working) after 2 correct eqns score SCB1B1 for each correct pair (a, b)
8 (i) OA. $\boldsymbol{O B}=-3 p^{2}-4+p^{4}$ soi $\left(p^{2}+1\right)\left(p^{2}-4\right)=0 \quad$ oe e.g. with substitution $p= \pm 2$ and no other real solutions (ii) $\overrightarrow{B A}=\left(\begin{array}{l}9 \\ 4 \\ 9\end{array}\right)-\left(\begin{array}{c}-3 \\ -1 \\ 9\end{array}\right)=\left(\begin{array}{c}12 \\ 5 \\ 0\end{array}\right)$ $\|\overrightarrow{B A}\|=\sqrt{12^{2}+5^{2}}=13$ and division by their 13 Unit vector $=\frac{1}{13}\left(\begin{array}{c}12 \\ 5 \\ 0\end{array}\right) \quad$ cao	M1 M1 A1 [3] M1 M1 A1 [3]	Put $=0$ (soi) and attempt to solve Reversed subtraction can score M1M1A0
9 $\text { (i) } \begin{aligned} \text { LHS } & \equiv \frac{\sin ^{2} \theta-(1-\cos \theta)}{(1-\cos \theta) \sin \theta} \\ & \equiv \frac{1-\cos ^{2} \theta-1+\cos \theta}{(1-\cos \theta) \sin \theta} \\ & \equiv \frac{\cos \theta(1-\cos \theta)}{(1-\cos \theta) \sin \theta} \\ & \equiv \frac{1}{\tan \theta} \end{aligned}$ (ii) $\begin{aligned} & \tan \theta=(\pm) \frac{1}{2} \\ & 26.6^{\circ}, \quad 153.4^{\circ} \end{aligned}$	B1 M1 M1 A1 [4] M1 A1A1』 [3]	Put over common denominator Use $s^{2}=1-c^{2}$ oe Correct factorisation from line 2 AG Ft for $180-1^{\text {st }}$ answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	11

10 (i) $-5 \leqslant \mathrm{f}(x) \leqslant 4 \quad$ For $\mathrm{f}(x)$ allow x or y; allow $<,[-5,4],(-5,4)$ (ii) $\mathrm{f}^{-1}(x)$ approximately correct (independent of f) Closed region between $(1,1)$ and $(4,4)$; line reaches x-axis (iii) LINE: $\mathrm{f}^{-1}(x)=\frac{1}{3}(x+2)$ for $-5 \leqslant x \leqslant 1$ CURVE: $5-y=\frac{4}{x} \quad$ OR $\quad x=5-\frac{4}{y}$ $\mathrm{f}^{-1}(x)=5-\frac{4}{x} \quad$ oe for $1<x \leqslant 4$	B1 $[1]$ B1 DB1 $[2]$ B1 B1B1 M1 A1 B1	Allow less explicit answers (eg $-5 \rightarrow 4$) Ignore line $y=x$ Allow $y=\ldots$. but must be a function of x cao but allow $<$ cao cao but allow $<$ or $<$
11 (i) $\begin{aligned} & x^{2}+4 x+c-8(=0) \\ & 16-4(c-8)=0 \\ & c=12 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt to simplify to 3-term quadratic Apply $b^{2}-4 a c=0 . \quad '=0$ ' soi
OR $\begin{aligned} & -2-2 x=2 \rightarrow x=(-2) \\ & -4+c=8+4-4 \\ & c=12 \end{aligned}$ (ii) $\begin{aligned} & x^{2}+4 x+3 \rightarrow(x+1)(x+3)(=0) \rightarrow \\ & x=-1 \text { or }-3 \end{aligned}$	$\begin{array}{l\|} \text { M1 } \\ \text { M1 } \end{array}$	Equate derivs of curve and line. Expect $x=-2$ Sub their $x=-2$ into line and curve, and equate
$\begin{array}{r} \int\left(8-2 x-x^{2}\right)-\left[\int(2 x+11) \text { or area of trapezium }\right] \\ {\left[8 x-x^{2}-\frac{x^{3}}{3}\right]-\left[x^{2}+11 x\right] \text { or }\left[8 x-x^{2}-\frac{x^{3}}{3}\right]-\frac{1}{2}(5+9) \times 2} \end{array}$ Apply their limits to at least integral for curve $1 \frac{1}{3}$ oe	M1M1 A1B1 M1 A1 [7]	Attempt to integrate. At some stage subtract A1 for curve, B1 for line OR $\left[-3 x-2 x^{2}-\frac{x^{3}}{3}\right] \mathrm{A} 2,1,0$ For M marks allow reversed limits and/or subtraction of areas but then final A0

Page 7	Mark Scheme	Syllabus	Paper

12 (i) $y=\frac{2}{3} x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+(c)$ oe
$\frac{2}{3}=\frac{16}{3}-4+c$
$c=-\frac{2}{3}$
(ii) $\frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}$ oe
(iii) $\quad x^{\frac{1}{2}}-x^{-\frac{1}{2}}=0 \rightarrow \frac{x-1}{\sqrt{x}}=0$
$x=1$
When $x=1, y=\frac{2}{3}-2-\frac{2}{3}=-2$
When $x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}(=1)>0 \quad$ Hence minimum

B1B1

B1

Attempt to integrate
$\operatorname{Sub}\left(4, \frac{2}{3}\right)$. Dependent on c present

Equate to zero and attempt to solve

Sub. their ' 1 ' into their ' y '

Everything correct on final line. Also dep on correct (ii). Accept other valid methods

