9709 s14 ms 11

	Page 4	4	Mark Scheme				Syllabus	Paper		
		GCE AS/A LEVEL – May/June 2014				4	9709	11		
1	a=1, l	<i>b</i> = 2		B1B1 [2	2]	Or 1+2 size	n x			
2	(i) $(2x-3)^2 - 9$				2]	For –3 and	-9			
	(ii) 2 <i>x</i> – 2	3 > 4	2x - 3 < -4	M1		At least one of these statements				
	<i>x</i> > 3	$\frac{1}{2}$ (or)	$x < -\frac{1}{2}$ cao	A1		Allow 'and' $3\frac{1}{2}$, $-\frac{1}{2}$ so iscores first M1				
	Allow	$w -\frac{1}{2} >$	$x > 3\frac{1}{2}$							
OF	R $4x^2 -$	-12x - 7	$7 \rightarrow (2x - 7)(2x + 1)$	M1		Attempt to solve 3-term quadratic				
	<i>x</i> > 3	$\frac{1}{2}$ (or)	$<-\frac{1}{2}$ cao	A1	21	Allow 'and	$3\frac{1}{2}, -\frac{1}{2}$ so is	cores first M1		
	Allow	$w -\frac{1}{2} >$	$x > 3\frac{1}{2}$	[4	-1					
3	[⁸ C ₆ or 28	8]×[16	or $4^2](x^6) \times \left[\frac{1}{(64 \text{ or } 2^6)(x^6)}\right]$	B1B1B	1	Seen in exp	ansion ok. Allo	w ⁸ C ₂		
	7		$\left[\left(04012\right) \left(x\right) \right]$	B1 [4]	l	Identified a	s answer			
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[-2 \times\right]$	< 4(3x+1)) ⁻³]×[3]	B1B1		$[-2 \times 4u^{-3}]$	× [3] is B0B1 u	nless resolved		
	When $x = -1$, $\frac{dy}{dx} = 3$			B1						
	When $x = y - 1 = 3(x + y)$	x = -1, y = -1, x = -1	x = 1 soi $(\rightarrow y = 3x + 4)$	B1 B1 √^	5]	Ft on <i>their</i>	'3' only (not $-\frac{1}{2}$	$\frac{1}{3}$). Dep on diffn		
5	(i) 200/2	2(2a + 1)	$(199d) = 4 \times 100/2(2a + 99d)$	M1A1		Correct form eqn A1	nula used (once	e) M1, correct		
	d=2	la cao		A1	3]					
	(ii) $a+9$	99d = a	$+99 \times 2a$	M1		Sub. <i>their</i> p	art(i) into corre	ct formula		
	1774	cuo		[2	2]					
6	(i) area	$\Delta = \frac{1}{2} >$	«4×4tanα oe soi	B1		$4 \tan \alpha = \sqrt{10}$	$\frac{1}{6/\cos^2\alpha-16}$. (0	Can also score in		
	Area	sector	$=\frac{1}{2} \times 2^2 \alpha$ or soi	B1		answer) Ac	cept θ througho	ut		
	Shad	led area	$\frac{2}{2} = 8\tan\alpha - 2\alpha \text{cao}$	B1 [3	3]	Little/no wo	orking – accept	terms in answer		
		_ 4		B1						
	(II) DC = Arc	$-\frac{1}{\cos \alpha}$	-2 UT SUI	B1		$\frac{4}{\cos \alpha} = \sqrt{16}$	+16 $\tan^2 \alpha$. Can	score in answer		
	Perin	DE = 20 neter =	$\frac{4}{2} + 4\tan\alpha + 2\alpha$ cao			cosα				
	- •		$\cos \alpha$	B1 [3	3]	Little/no wo	orking – accept	terms in answer		

						970	9 s14 ms 11
	F	Page 5 Mark Scheme					Paper
		GCE AS/A LEVEL – May/June 2014			14	9709	11
				•	1		
7	(a –	$(-3)^2 + (2-b)^2$	=125 oe	B1			
	$\frac{2-b}{a-3} = 2$ oe			B1			
	(a -	$(-3)^2 + (2a-6)^2$	$^2 = 125$ (sub for <i>a</i> or <i>b</i>)	M1	Or 1/4(2 -	$(b)^{2} + (2-b)^{2} = 1$	25
	(5)((a+2)(a-8)	(=0) Attempt factorise/solve	M1	Or (5)(b -	(12)(b+8) (= 0)	
	a = -2 or 8, $b = 12$ or -8			A1A1	Answers (no working) after	2 correct eqns
				[6]	score SCE	B1B1 for each corr	rect pair (a, b)
8	(i)	OAOR -	$3n^2$ $4 + n^4$ soi	M1			
0	(1)	(1) $(p^2 - 4) = 0$ or $(p^2 - 4) = 0$ or $(p^2 - 4) = 0$ or $(p^2 - 4) = 0$			Put = 0 (see	oi) and attempt to	solve
		$p = \pm 2$ and	no other real solutions	A1	,	, ,	
				[3]			
		\rightarrow $\begin{pmatrix} 9 \end{pmatrix}$	$\begin{bmatrix} -3 \\ 12 \end{bmatrix}$				
	(ii)	$BA = \begin{vmatrix} 4 \end{vmatrix} - \begin{vmatrix} - \end{vmatrix}$	-1 = 5	M1	Reversed	subtraction can sc	ore M1M1A0
		(9) (9)(0)				
		$ \overrightarrow{BA} = \sqrt{12^2}$	$\overline{+5^2} = 13$ and division by <i>their</i> 13	M1			
		•					
			(12)				
		Unit vector	$=\frac{1}{13}$ 5 cao	A1			
			13(0)	[3]			
9	(i)	LHS $\equiv \frac{\sin^2}{2}$	$\frac{\theta - (1 - \cos \theta)}{2}$ cao	B1	Put over c	ommon denomina	ator
-	(-)	(1-	$-\cos\theta$) $\sin\theta$				
		1-c	$\cos^2 \theta - 1 + \cos \theta$	M1	$U{\rm R2} c^2 -$	$1 - c^2$ or	
		=(1	$-\cos\theta$)sin θ	1411	0363 -	1-0 00	
		_ cos	$\theta(1-\cos\theta)$	M1	Correct fo	atorisation from 1	ino 2
		$=\frac{1}{(1-1)^{2}}$	$\cos\theta$) $\sin\theta$	1911	Concerna		
		=	=	A 1	AG		
		tan (9	[4]	AU		
		() 1					
	(11)	$\tan \theta = (\pm) - 2$	-	M1			
		26.6°, 15.	3.4°	A1A1√	Ft for 180	– 1 st answer	
				[3]			

	Page 6	Mark Caham	970	9_SI4_ms_II				
	Page 6		Syllabus 0700	Paper				
		GCE AS/A LEVEL - Ma	y/June 20	14	9709	11		
10 (i) $-5 \le f(x)$ allow <, [-	≤ 4 For f(x) allow x or y; -5, 4], (-5,4)	B1 [1]	Allow less explicit answers (eg $-5 \rightarrow 4$)				
(ii) $f^{-1}(x)$ approximately $f^{-1}(x)$ app	roximately correct (independent of f) gion between (1, 1) and (4, 4); line axis	B1 DB1 [2]					
(iii) LINE:	$f^{-1}(x) = \frac{1}{3}(x+2)$	B1	Allow $y =$	function of x			
		for $-5 \le x \le 1$	B1B1	cao but al				
	CURVE:	$5 - y = \frac{4}{x} \text{OR} x = 5 - \frac{4}{y}$	M1					
		$\mathbf{f}^{-1}(x) = 5 - \frac{4}{x} \text{oe}$	A1	cao				
		for $1 < x \le 4$	B1 [6]	cao but al	llow < or <			
11 (i) $x^2 + 4x + c$ 16 - 4(c - c) c = 12	(c - 8 (= 0)) (-8) = 0	M1 M1 A1	Attempt to simplify to 3-term quadratic Apply $b^2 - 4ac = 0$. '= 0' soi				
UK	-2 - 2x = $-4 + c = 8$	$-2 - 2x = 2 \rightarrow x = (-2)$ -4 + c = 8 + 4 - 4		Equate derives of curve and line. Expect $x=-2$ Sub <i>their</i> $x = -2$ into line and curve, and equate				
	<i>c</i> = 12		A1 [3]	1				
(ii) $x^2 + 4x + 2$ x = -1 or -	$3 \rightarrow (x+1)(x+3) (=0) \rightarrow$ -3	B1					
$\left[8x-x\right]$	$\int \left(8-2x-x\right)^{2} - \frac{x^{3}}{3} - \left[x^{2}+x\right]^{2}$	x^{2})-[$\int (2x+11)$ or area of trapezium] -11x]or $\left[8x-x^{2}-\frac{x^{3}}{3}\right]-\frac{1}{2}(5+9)\times 2$	M1M1 A1B1	Attempt to A1 for cur $OR \begin{bmatrix} -3 \end{bmatrix}$	t to integrate. At some stage subtract curve, B1 for line $2x - 2x^2 - \frac{x^3}{2} = 42 \pm 0$			
	Apply the $1\frac{1}{3}$ oe	<i>ir</i> limits to at least integral for curve	M1 A1 [7]	For M ma subtraction	l limits and/or n final A0			

_							970	9 s14 ms 11
	Page 7 Mark Schem				e		Syllabus	Paper
		GCE AS/A LEVEL – May				14	9709	11
12	(i)	$y = \frac{2}{3}x^{\frac{3}{2}} - 2$	$x^{\frac{1}{2}} + (c)$ oe		B1B1	Attempt to	ointegrate	
		$\frac{2}{3} = \frac{16}{3} - 4 +$	- C		M1	Sub $\left(4,\frac{2}{3}\right)$. Dependent on c	present
		$c = -\frac{2}{3}$			A1 [4]			
	(ii)	$\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{2}}$	$-\frac{3}{2}$ oe		B1B1 [2]			
	(iii)	$x^{\frac{1}{2}} - x^{-\frac{1}{2}} = 0$	$0 \to \frac{x-1}{\sqrt{x}} = 0$		M1	Equate to	zero and attempt	to solve
		x = 1			A1			
		When $x = 1$	$, y = \frac{2}{3} - 2 - \frac{2}{3} =$	= -2	M1A1	Sub. their	'1' into <i>their</i> 'y'	
		When $x = 1$	$, \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} (=1) > 0$	Hence minimum	B1 [5]	Everything correct (ii)	g correct on final). Accept other va	line. Also dep on lid methods