Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding. Penalise <3 sfs only once in paper.

1 (i)	One of each is more likely $\mathrm{P}($ one of each $=0.5), \mathrm{P}(\mathrm{HH})=0.25$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [2]	or $\mathrm{P}(\mathrm{TT})=0.25$
(ii)	Choose Charlie only if H then T Throw again if T then H		or similar e.g. HH for A, HT for B, TT for C or vice versa
2	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=17 \\ & \mathrm{H}_{1}: \text { Pop mean } \neq 17 \\ & \frac{18.2-17}{\frac{2.4}{\sqrt{5}}} \\ & =1.12(3 \mathrm{sf}) \\ & \prime 1.12^{\prime}<1.96 \text { oe } \end{aligned}$ Claim can be accepted	B1 M1 A1 M1 A1ft	Both correct. Allow μ, but not just "mean" Allow incorrect 18.2. Must have $\sqrt{5}$ $17 \pm 1.96 \frac{2.4}{\sqrt{5}}$$\quad$ M1
3	$\begin{aligned} & \operatorname{Var(\text {total})=6(3.2^{2}+2.6^{2})(+0))} \begin{array}{l} (=102) \\ \text { Total } \sim \mathrm{N}(1528,102)) \\ \\ \frac{1550-" 1528^{\prime \prime}}{\sqrt{" 102^{\prime \prime}}} \\ 1-\Phi(" 2.178 ") \\ =0.0147(3 \mathrm{sf}) \end{array} \\ & \end{aligned}$	B1 B1 M1 M1 A1 [5]	For mean (1528)oe and for variance (102) May be implied by use of $\mathrm{N}\left(1528,10.1^{2}\right)$ For standardising. No SD/Var mix For correct area consistent with working
4 (i)	$\begin{aligned} \operatorname{est}(\mu) & =2005 / 200=(10.025) \\ \operatorname{est}\left(\sigma^{2}\right) & \left.=\frac{1}{99} 20175-\frac{2005^{2}}{200}\right) \\ & =0.376(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 [3]	Correct subst in correct formula
(ii)	$\begin{aligned} & \frac{10-{ }^{\prime} 10.025^{\prime}}{\sqrt{\frac{0.376256^{\prime}}{50}}} \\ & 1-\Phi\left({ }^{\circ} 0.288^{\prime}\right) \\ & =0.387(3 \mathrm{sf}) \end{aligned} \quad(=-0.288)$	M1 M1 A1 [3]	Allow without $\sqrt{ }$, but $\div \sqrt{ } 50$ essential (Use of 'biased' variance can still score fully in (ii))

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	71

(iii)	Yes; (assumed distr of \bar{X} normal) although distr of X unknown	B1 B1 [2]	
5 (i)	$\begin{aligned} & \mathrm{B}(520,0.008) \\ & \mathrm{Po}(4.16) \\ & n=500 \text { which is large, } \\ & n p=4.16 \text { which is }<5 \text { or } \mathrm{p} \text { small }<0.1 \end{aligned}$	B1 B1B1 B1 [4]	Po: B1, $\lambda=4.16$: B1 Both needed
(ii)	$\text { (a) } \begin{aligned} & 1-\mathrm{e}^{-4.16}(1+4.16+ \\ & \left.\frac{4.16^{2}}{2}+\frac{4.16^{3}}{3!}\right) \\ & =0.597(3 \mathrm{sf}) \end{aligned}$	M1 A1 [2]	$1-\mathrm{P}(0,1,2,3)$ any λ allow one end error
	(b) $\begin{aligned} & \mathrm{e}^{-4.16} \times \frac{4.16^{n}}{n!}>\mathrm{e}^{-4.16} \times \frac{4.16^{n+1}}{(n+1)!} \\ & 1>\frac{4.16}{n+1} \\ & n>3.16 \end{aligned}$ $\text { Smallest } n \text { is } 4$	M1 A1 A1 [3]	any λ or equiv equn without e and without factorials (Calculation of $\mathrm{P}(0), \mathrm{P}(1), \ldots \mathrm{P}(5)$ scores M1 for at least 3 attempted, A1 all correct, A1 for $\mathrm{n}=4$)
6 (i)	$\begin{aligned} & \frac{1}{2} \int_{4}^{t} \frac{1}{\sqrt{t}} \mathrm{~d} t=0.9 \text { or } \frac{1}{2} \int_{t}^{9} \frac{1}{\sqrt{t}} \mathrm{~d} t=0.1 \\ & {[\sqrt{t}]_{4}^{t}=0.9 \text { or }[\sqrt{t}]_{t}^{9}=0.1} \\ & ((\sqrt{\mathrm{t}}-2)=0.9 \text { or }(3-\sqrt{ } \mathrm{t})=0.1) \\ & t=8.41 \text { (mins) }(3 \mathrm{sf}) \end{aligned}$	M1 A1 A1 [3]	Attempt integ $\mathrm{f}(t)$ with unknown limit and $0.9 / 0.1$. Correct integration \& limits $=0.9$ or 0.1.
(ii)	$\frac{1}{2} \int_{4}^{9} \frac{t}{\sqrt{t}} \mathrm{~d} t \quad$ oe $\frac{1}{2}\left[\frac{t 1.5}{1.5}\right]_{4}^{9}$ oe $=\frac{19}{3}$ $\frac{1}{2} \int_{4}^{9} \frac{t 2}{\sqrt{t}} \mathrm{~d} t \quad$ oe $\begin{aligned} & \left(=\frac{1}{2}\left[\frac{t 2.5}{2.5}\right]_{4}^{9}=\frac{211}{5}\right) \\ & =\frac{{ }^{211}}{5}-\left(\frac{19^{\prime}}{3}\right)^{2} \\ & =\frac{94}{45} \text { or } 2.09(3 \mathrm{sf}) \end{aligned}$	M1 A1 A1 M1 M1 A1 [6]	Attempt integ $t \mathrm{f}(t)$. Ignore limits Correct integration \& limits Attempt integ $t^{2} \mathrm{f}(t)$. Ignore limits integ $t^{2} \mathrm{f}(t)-(\text { integ } t \mathrm{f}(t))^{2}$ attempted

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	71

$7 \quad$ (i)	Conclude die is biased when it isn't oe $\begin{aligned} & { }^{5} \mathrm{C}_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{2}+5\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)+\left(\frac{1}{6}\right)^{5}+5 \\ & =\frac{23}{648} \text { or } 0.0355(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 [3]	In context or $1-\left({ }^{5} \mathrm{C}_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right) 3+5\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{4}+\left(\frac{5}{6}\right)^{5}\right)$ allow 1 end error
(ii)	$\begin{aligned} & \text { State or attempt } \mathrm{P}(0,1,2) \text { with } p=\frac{2}{3} \\ & { }^{5} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{3}+5\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5} \\ & =\frac{17}{81} \text { or } 0.210(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	Or $1-\mathrm{P}(3,4,5)$ Attempt at correct expression Allow 0.21
(iii)	$\begin{aligned} & \operatorname{Est} \operatorname{Var}\left(P_{s}\right)=\frac{0.625 \times(1-0.625)}{80} \\ & \left(=\frac{3}{1024}\right) \\ & z=2.054(\text { or } 2.055) \\ & 0.625 \pm z \times \sqrt{\frac{3^{\prime}}{1024}} \\ & =0.514 \text { to } 0.736(3 \mathrm{sf}) \end{aligned}$	M1 B1 M1 A1 [4]	Any z

