Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	63

1 $\begin{aligned} & \mathrm{P}(Q)=\frac{4}{36} \text { or } \mathrm{P}(S)=\frac{1}{2} \\ & \mathrm{P}(Q \cap S)=\frac{2}{36} \text { or } \mathrm{P}(\mathrm{~S} \mid \mathrm{Q})=\frac{1}{2} \text { or } \\ & \mathrm{P}(\mathrm{Q} \mid \mathrm{S})=\frac{2}{18} \\ & \mathrm{P}(Q \cap S)=\mathrm{P}(Q) \times \mathrm{P}(\mathrm{~S}) \text { or } \\ & \mathrm{P}(\mathrm{~S} \mid \mathrm{Q})=\mathrm{P}(\mathrm{~S}) \text { or } \mathrm{P}(\mathrm{Q} \mid \mathrm{S})=\mathrm{P}(\mathrm{Q}) \end{aligned}$ Independent	B1 B1 M1 A1	oe oe Comparing correct pair of terms $0 \leq$ all probabilities <1 Correct conclusion must have all probs correct
$2 \quad \begin{aligned} & \mathrm{P}(\text { at least } 2)=\mathrm{P}(2,3) \text { or } 1-\mathrm{P}(0,1) \\ & =\frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} \times{ }_{3} \mathrm{C}_{2}+\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} \\ & =\frac{4}{11}(0.364) \\ & \mathrm{OR} \frac{\left({ }_{5} \mathrm{C}_{3}\right)+\left({ }_{5} \mathrm{C}_{2} \times{ }_{7} \mathrm{C}_{1}\right)}{{ }_{12} \mathrm{C}_{3}} \end{aligned}$	M1 M1 M1 A1 $[4]$ M1 M1 M1 A1	Summing, or 1-, two different three-factor prob expressions, ${ }_{3} \mathrm{C}_{2}$ not needed 12, 11, 10 seen or implied in denominator Mult a prob by ${ }_{3} \mathrm{C}_{2}$ or ${ }_{3} \mathrm{C}_{1}$ oe Correct answer ${ }_{5} \mathrm{C}_{3}$ seen added in numerator ${ }_{5} \mathrm{C}_{2}$ seen mult alone or in numerator ${ }_{12} \mathrm{C}_{3}$ seen in denom Correct answer
3 $\text { (i) } \begin{aligned} \mathrm{P}(\text { tall }) & =\mathrm{P}\left(z>\frac{70-50}{16}\right)=\mathrm{P}(\mathrm{z}>1.25) \\ & =1-0.8944 \\ & =0.106 \end{aligned}$ (ii) $\mathrm{P}($ short $)=(1-0.1056) / 3$ $\begin{aligned} & =0.2981 \\ z & =-0.53 \\ -0.53 & =\frac{x-50}{16} \\ x & =41.5 \end{aligned}$	M1 A1 [2] M1 A1 ft A1 M1 A1 $[5]$	$+\mathrm{ve} /-\mathrm{ve}$ Standardising no cc no sq rt no sq Correct answer Subt their (i) from 1 or their (i) and multiplying by $\frac{1}{3}$ or $\frac{2}{3}$ Rounding to 0.298 , only ft for $\frac{(1-(\mathbf{i}))}{3}$ \pm z-value rounding to 0.53 , condone ± 0.24 Standardising with their z value (not a probability), no cc sq rt etc. Correct answer

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	63

4 (i) $\begin{aligned} & (0.8)^{n}<0.001 \\ & n>30.9 \\ & n=31 \end{aligned}$ (ii) $\begin{aligned} & \mu=120 \times 0.2=24 \\ & \sigma^{2}=120 \times 0.2 \times 0.8=19.2 \\ & \begin{aligned} P(x<33) & =P \times\left(z<\frac{32.5-24}{\sqrt{19.2}}\right) \\ & =\mathrm{P}(\mathrm{z}<1.9398) \\ & =0.974 \end{aligned} \end{aligned}$	M1 M1 A1 $[3]$ B1 M1 M1 A1 $[4]$	Eqn or inequ involving 0.8^{n} or 0.2^{n} and 0.001 or 0.999 Trial and error or logs (can be implied) Correct answer MR 0.01, max available M1M1A0 24 and 19.2 or $\sqrt{19.2}$ seen Standardising with or without cc , must have sq rt in denom Continuity correction 32.5 or 33.5 Correct answer
5 (a) $\begin{aligned} \mathrm{P}\left(\mathrm{~W}_{2}\right) & =\mathrm{P}\left(\mathrm{~W}_{1} \mathrm{~W}_{2}\right)+\mathrm{P}\left(\mathrm{~L}_{1} \mathrm{~W}_{2}\right) \\ & =0.3 \times 0.6+0.7 \times 0.15 \\ & =0.285 \\ \mathrm{P}\left(\mathrm{~W}_{1} \mid \mathrm{W}_{2}\right) & =\frac{\mathrm{P}\left(\mathrm{~W}_{1} \cap \mathrm{~W}_{2}\right)}{\mathrm{P}\left(\mathrm{~W}_{2}\right)}=\frac{0.18}{0.285} \\ & =0.632, \frac{12}{19} \end{aligned}$ (b) $x+4$ oe seen $\frac{10}{15} \times \frac{7}{x+4}=\frac{7}{18}$ $x=8$	B1 M1 A1 A1 $[4]$ B1 M1 A1 A1 $[4]$	0.3×0.6 alone as num or denom of a fraction Attempt at $\mathrm{P}\left(\mathrm{W}_{2}\right)$ as sum of two 2 -factor options seen anywhere Correct unsimplified $\mathrm{P}\left(\mathrm{W}_{2}\right)$ as num or denom of a fraction Correct answer Seen anywhere Mult two probabilities, one containing x and equating to $\frac{7}{18}$ Correct unsimplified equation Correct answer
6 (i) $(40,0),(50,12)$ etc. up to $(90,144)$ (ii) 80 weigh less than 67.2 kg $c=67.2$	B1 B1 [2] M1 A1 ft [2]	Axes, (cf) and labels (kg), uniform scales from at least 0-140 and 40.5-69.5 either way round All points correct, sensible scale (not 12), polygon or smooth curve Subt 64 from 144 Accept anything between 67 and 68 ft from incorrect graph

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	63

(iii) freqs $12,22,30,28,52$ $\begin{aligned} & \text { mean } \mathrm{wt}=(45 \times 12+55 \times 22+62.5 \\ &\times 30+67.5 \times 28+80 \times 52) \\ & / 144 \\ &= 9675 / 144 \\ &= 67.2 \mathrm{~kg} \\ & \mathrm{Var}\left(45^{2} \times 12+55^{2} \times 22+\right. \\ & 62.5^{2} \times 30+67.5^{2} \times 28+80^{2} \times \\ &52) / 144 \\ &-(9675 / 144)^{2}=127.59 \\ & \mathrm{sd}= 11.3, \text { allow } 11.2 \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	frequencies attempt not cf Correct freqs Using mid points attempt, i.e. $44.5,45,45.5$, in correct mean formula, unsimplified, no cfs, condone 1 error. Correct mean Substituting their mid-pts squared (may be class widths, lower or upper bound) in correct var formula even with cfs with their mean ${ }^{2}$ Correct answer
7 (i)		
	M1 M1 B1 A1 $[4]$	Summing 2 or more 3 -factor options perms or combs Mult 3 combs or 4 combs with $\Sigma r=7$ 2 options correct, unsimplified Correct answer
(ii) $2!\times 2!\times 5$!	M1 M1	$2!\times 2$! oe, seen mult by an integer ≥ 1, no division Mult by 5!, or 5! alone, seen mult by an integer ≥ 1 no division
$=480$ If M0 earned $\frac{2!\times 2!}{2!\times 2!}$ or $\frac{5!}{3!}$ or both, seen mult by an integer ≥ 1 Or $2!\times 2!\times 5$! divided by a value	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{SCM} 1 \end{aligned}$	Correct answer
(iii) spaniels and retrievers in 4 ! ways gaps in 5 P 3 or $5 \times 4 \times 3$ ways $=1440$	M1 M1 A1 [3]	4! seen multiplied by an integer >1 Mult by 5P3 oe Correct answer
If M0 earned $\frac{4!}{2!\times 2!}$ or $\frac{{ }_{5} \mathrm{P}_{3}}{3!}$ or both, seen multiplied by an integer >1 or	SCM1	${ }_{5} \mathrm{C}_{3}$ oe
$7!-5!\times 3!$	M1	oe
$-\{(4!\times 2 \times 4 \times 3!)+$	M1	oe, e.g. $6 \times 5 \times 4 \times 4$!
$\begin{aligned} & (4!\times 3 \times 4 \times 3!)\} \\ = & 1440 \end{aligned}$	A1	
If M0 earned		
$3!\times 2!\times 2!$ used as a denominator in all 4 terms	SCM1	Marks cannot be earned from both methods.

