Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	62

1	$\begin{aligned} & z=1.452 \\ & 1.452=\frac{20-\mu}{\mu / 5} \\ & \quad \mu=15.5 \end{aligned}$	B1 B1 B1	[3]	Rounding to ± 1.45 $\frac{20-\mu}{\mu / 5}$ or $\frac{20-5 \sigma}{\sigma}$ seen oe rounding to correct answer
2	$\begin{aligned} & \bar{x}=50+81.4 / 22=53.7 \\ & \operatorname{var}=671 / 22-3.7^{2}=16.81(16.8) \\ & 16.81=\Sigma x^{2} / 22-53.7^{2} \\ & = \\ & =63811(63800) \end{aligned}$ OR $\Sigma x-22 \times 50=81.4(\Sigma x=1181.4)$ $\Sigma x^{2}-100 \Sigma x+22 \times 50^{2}=671$ $\begin{aligned} & \Sigma x^{2}=671+118140-55000=63811 \\ & \text { Var }=\Sigma x^{2} / 22-(\Sigma x / 22)^{2}=16.81 \end{aligned}$	M1 A1 M1 A1 M1 M1 A1 A1	[4]	Attempt to find variance using coding in both, correct formula Correct answer using their var and their mean with uncoded formula for both correct answer expanded eqn with 22×50 seen expanded eqn with 2 or 3 terms correct correct answer correct answer
3 (i) (ii)	$\begin{aligned} & \mathrm{P}(x<440) \\ & =\mathrm{P}\left(z<\frac{440-445}{3.6}\right)=1-\Phi(1.389) \\ & =1-0.9176 \end{aligned}$ $\text { Ans }=0.0824$ $z=1.881$ $\frac{c}{3.6}=1.881$ $c=6.77$	M1 M1 A1 M1 M1 A1	[3]	Standardising no ce no sq or sq rt Correct area $(1-\Phi)$ oe (indep) Rounding to correct answer accept 0.0825 ± 1.88 or 1.881 or 1.882 or 1.555 seen \pm Equation with $\pm c / 3.6$ or $2 c / 3.6$ only $=$ z or prob (can be implied) Correct answer accept 6.78
4 (i) (ii)	$\left.\begin{array}{l} p=4 / 9 \text { or } 5 / 9 \\ \mathrm{P}(\text { at least } 2)=1-\mathrm{P}(0,1) \\ =1-(5 / 9)^{5}-(4 / 9)(5 / 9)^{4}{ }_{5} \mathrm{C}_{1} \\ \quad=0.735 \end{array}\right\} \begin{aligned} & n p=96 n p q=32 p=\mathrm{P}(\leq k) \\ & p=2 / 3 q=1 / 3 n=144 \\ & k=6 \\ & n=144 \end{aligned}$	B1 M1 A1 M1 A1 A1ft A1	[3]	Binomial term ${ }_{5} \mathrm{C}_{x} p^{x}(1-p)^{5-x}$ seen Correct answer Using $n p=96 n p q=32$ to obtain eqn in 1 variable $1 / 3$ or $2 / 3$ seen or implied Correct $k \mathrm{ft} k=9 p$ correct n

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	62

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
5 (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{l|l}
Stem \& leaf \\
\hline 0 \& 1468 \\
1 \& 034445556666788 \\
2 \& 01578 \\
3 \& 1 \\
4 \& 5 \\
5 \& 7
\end{tabular} \\
Key 1 4 represents \(\$ 140\)
\[
\begin{aligned}
\& \text { Median }=160 \\
\& L Q=140 U Q=210 \\
\& I Q \text { range }=U Q-L Q \\
\& \quad=70 \\
\& 1.5 \times \text { IQ range }=105
\end{aligned}
\] \\
Lower outlier is below 35 \\
Upper outlier is above 315 \\
Outliers 10, 450, 570
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1ft \\
B1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
A1
\end{tabular} \& [3] \& \begin{tabular}{l}
Correct stem condone a space under the 1 \\
Correct leaves must be single digits and one line for each stem value or 2 lines each stem value \\
Correct key must have \$, ft 2 special cases \\
Subt their LQ from their UQ \\
Correct answer cwo \\
Mult their IQ range by 1.5 can be implied \\
Correct limits ft their IQ range and quartiles \\
Correct outliers
\end{tabular} \\
\hline \begin{tabular}{l}
\(6 \quad\) (i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& \text { H } \begin{array}{rrll}
\mathrm{J} \& \mathrm{O} \& =4 \mathrm{C} 2 \times 9 \mathrm{C} 8 \times 2 \mathrm{C} 2=54 \\
\& 1 . \& 28 \& 2 \\
3 \& 7 \& 2 \& =4 \mathrm{C} 3 \times 9 \mathrm{C} 7 \times 2 \mathrm{C} 2=144 \\
4 \& 6 \& 2 \& =4 \mathrm{C} 4 \times 9 \mathrm{C} 6 \times 2 \mathrm{C} 2=84
\end{array} \\
\& \text { Total }=282 \text { ways } \\
\& 4!\times 6!\times 2!\times 3! \\
\& =207360(207000) \\
\& 8 \mathrm{CJ} \text { and } \mathrm{O} \text { trees in } 8!=40320 \text { ways } \\
\& 9 \text { gaps } \times 8 \times 7 \times 6 \\
\& =121,927,680(122,000,000)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1
\end{tabular} \& [4]
[3]

[3] \& | Mult 3 combs, 2 C 2 may be implied $4 \mathrm{C} x \times 9 \mathrm{C} y \times 2 \mathrm{C} z$ |
| :--- |
| Summing 2 or 3 three-factor options 2 options correct unsimplified |
| Correct answer |
| $4!\times 6!\times 2$! oe seen multiplied by int ≥ 1 |
| 3 ! seen mult by int ≥ 1 |
| Correct answer |
| 8 ! seen mult by int ≥ 1 no division 9 P 4 oe or 7 P 4 or 8 P 4 seen mult by int ≥ 1 no division |
| Correct answer | \\

\hline (i) \& SR $4 \mathrm{C} 2 \times 9 \mathrm{C} 2 \times 2 \mathrm{C} 2 \times 9 \mathrm{C} 6$ \& M1 \& \& \\
\hline (ii) \& SR $\frac{4!\times 6!\times 2!}{4!\times 6 \times 2!}$ or 3 ! or both M1 \& M1 \& \& \\
\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{6 2}$

(iii)	SR1 12! - 9! 4! SR2 $\frac{9 P 4}{4!}$ or $\frac{8!}{6!2!}$ or both				M1 M1		
$7 \quad$ (i) (ii)	$\begin{aligned} & \mathrm{P}(T, B)=\frac{5}{12} \times \frac{2}{10}=\frac{1}{12}(0.0833) \\ & \mathrm{P}\left(C_{S} \cap C_{A}\right)=\frac{7}{12} \times \frac{4}{10}=\frac{28}{120}(0.2333) \\ & \mathrm{P}\left(C_{A}\right)=\frac{7}{12} \times \frac{4}{10}+\frac{5}{12} \times \frac{3}{10}=\frac{43}{120}(0.3583) \\ & \mathrm{P}\left(C_{S} \mid C_{A}\right)=\frac{P(C \cap C)}{P\left(C_{A}\right)}=\frac{28 / 120}{43 / 120} \\ & =\frac{28}{43}(0.651) \end{aligned}$				$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Mult their $\mathrm{P}(T)$ by $2 / 9$ or $2 / 10$ only Correct answer
					M1		Mult their $\mathrm{P}\left(C_{S}\right)$ by $3 / 9$ or $4 / 10$ seen as num or denom of a fraction
					M1		Summing 2 two-factor products to find $\mathrm{P}\left(C_{A}\right)$ seen anywhere
					A1		Correct unsimplified $\mathrm{P}\left(C_{A}\right)$ seen as num or denom of a fraction
					A1	[4]	Correct answer
(iii)	x	0	1	2	B1		$x=0,1,2$, can be implied from table or
	Prob	7/24	19/40	7/30			working
	$\mathrm{P}(X)$	$\mathrm{P}(T, B)$	(T, T)		M1		1 or 2 two-factor products, denoms 12 and 10 or 12 and 9 , implied if ans is correct
	$=\frac{5}{12}$	$+\frac{5}{12} \times$	$\frac{7}{24}(0$		A1		One correct unsimplified
	$\mathrm{P}(X=$	$\mathrm{P}(C, C$	$\frac{7}{12} \times \frac{4}{10}$	$\frac{8}{20}(0.233)$	B1		One other correct unsimplified
	$\mathrm{P}(X=$	$1-7 / 2$	$28 / 120$	$)(0.475)$	B1ft	[5]	Third correct ft $1-\mathrm{P}(2$ of their probs $)$)

