Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	51

1 (i) (ii) (iii)	$\begin{aligned} x= & (20 \cos 45) \mathrm{t} \\ y= & (20 \sin 45) \mathrm{t}-\mathrm{gt}^{2} / 2 \\ y= & (20 \sin 45)(x /(20 \cos 45) \\ & -\mathrm{g}[x /(20 \cos 45)]^{2} / 2 \\ y= & x-x^{2} / 40 \\ x= & 40 \mathrm{~m} \end{aligned}$	B1 B1 M1 A1 B1	$[2]$ $[2]$ $[1]$	Or $\sin 45,1 / \sqrt{2}, 0.707$ Or $\cos 45,1 / \sqrt{2}, 0.707$. Substitutes $\mathrm{t}=x /(20 \cos 45)$ at least once Only from $g=10$	[5]
2 (i) (ii)	$\begin{aligned} & \mathrm{T}=19.2 \times(2.7-1.2) / 1.2 \\ & 0.4 \mathrm{a}=0.4 \mathrm{~g}+\mathrm{T} \\ & \mathrm{a}=70 \mathrm{~ms}^{-2} \\ & 19.2(2.7-1.2)^{2} /(2 \times 1.2) \\ & \\ & 0.4 \mathrm{v}^{2} / 2=0.4 \mathrm{~g} \times 2.7 \\ & +19.2 \times(2.7-1.2)^{2} /(2 \times 1.2) \\ & \mathrm{v}=12 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1 B1 M1 A1 A1	[3]	$\mathrm{T}=24 \mathrm{~N}$ Newton's Second Law with 3 terms Initial $E E=18$ For a 3 term energy equation	[7]
3 (i) (ii) (iii)	$\begin{aligned} & 0.2 \times 0.1+0.3 \times 0=\mathrm{d}(0.2+0.3) \\ & \mathrm{d}=0.04 \mathrm{~m} \\ & 4 \times 0.3=0.04 \mathrm{~W} \\ & \mathrm{~W}=30 \mathrm{~N} \\ & \mu=4 / 30 \\ & \mu=0.133 \end{aligned}$	M1 A1 A1 M1 Alft M1 A1	$[3]$ $[2]$ $[2]$	Table of values or a moment equation Accept no mention of 0.3×0 Moments about A ft $1.2 / \mathrm{cv}(\mathrm{d}(\mathrm{i}))$ 4/cv(W(ii)) Accept 2/15	[7]
4 (i) (ii)	$\begin{aligned} & \mathrm{a}=10-0.45 \mathrm{v} \\ & \int 1 /(10-0.45 \mathrm{v}) \mathrm{dv}=\int \mathrm{dt} \\ & -\ln (10-0.45 \mathrm{v}) / 0.45=\mathrm{t}(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{v}=4, \mathrm{c}=-4.67(58 . .) \\ & -\ln (10-0.45 \mathrm{v}) / 0.45=1.5-4.676 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { DM1 } \\ & \text { M1 } \end{aligned}$	[1]	$0.2 \mathrm{a}=0.2 \mathrm{~g}-0.09 \mathrm{v}$ or similar should be seen An attempt at integration needed Attempts to find c or uses correct limits Uses $\mathrm{t}=1.5$ and evaluated c	

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	51

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \(\mathrm{v}=12.9\) or 13.0 \& A1 \& [5] \& \& [6] \\
\hline \begin{tabular}{l}
5 (i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{v}_{y}=50 \sin 40-2.5 \mathrm{~g} \\
\& \mathrm{v}^{2}=(50 \sin 40-2.5 \mathrm{~g})^{2}+(50 \cos 40)^{2} \\
\& \mathrm{v}=39(.0) \mathrm{ms}^{-1} \\
\& x=50 \cos 40 \times 2.5 \\
\& y=50 \sin 40 \times 2.5-2.5^{2} \mathrm{~g} / 2 \\
\& \tan \theta=49.09 / 95.75 \\
\& \theta=27.1^{\circ}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& [3]

[4] \& | Vertical component speed (=7.139...) |
| :--- |
| Uses Pythagoras with correct horizontal component |
| Horizontal displacement at 2.5 s (=95.75..) (=49.09..) |
| Appropriate ratio to find angle | \& [7] \\

\hline | (ii) (a) |
| :--- |
| OR |
| (ii) (b) | \& \[

$$
\begin{aligned}
& \text { Radial acc }^{n}=1.2^{2} /(0.2 \cos 30) \\
& \mathrm{T} \cos 30=0.3 \times 1.2^{2} /(0.2 \cos 30) \\
& \mathrm{T}=2.88 \mathrm{~N} \\
& \mathrm{~T} \cos 60=0.3 \mathrm{~g} \\
& \mathrm{~T}=6 \\
& 6 \cos 30=0.3 \omega^{2}(0.2 \cos 30) \\
& \omega=10 \\
& \mathrm{~T} \cos 30=0.3 \times 10^{2}(0.2 \cos 30) \\
& \mathrm{T}=6 \\
& \mathrm{R}+6 \cos 60=0.3 \mathrm{~g} \\
& \mathrm{R}=0 \text { and a higher value of } \omega \text { makes } \\
& \mathrm{R} \text { negative which is impossible } \\
& \mathrm{KE}=0.3(10 \times 0.2 \cos 30)^{2} / 2 \\
& \mathrm{KE}=0.45 \mathrm{~J}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& [3] \& | Radial acc ${ }^{n}=8.31 . . \mathrm{ms}^{-2}$ |
| :--- |
| Component of tension $=$ $\mathrm{m} \times$ radial acc ${ }^{n}$ |
| Uses T max in limiting case when $\mathrm{R}=0$ |
| May be implied |
| Component of max $\mathrm{T}=$ $\mathrm{m} \times$ maximum radial acc ${ }^{n}$ |
| From g = 10 only |
| Finds T max from $m \times \max (R A)$ |
| Resolves vertically with T max |
| Additional justification needed of inequality |
| Attempt at KE with $\mathrm{v}=10 \times$ radius | \& [7] \\

\hline 7 \& | $\mathrm{OG}=2 \operatorname{rsin}(\pi / 3) /(3 \pi / 3)$ |
| :--- |
| $15 \operatorname{rcos}(\pi-2 \pi / 3)$ $20 \times \operatorname{OGcos}(\pi / 3-\theta)$ | \& | B1 |
| :--- |
| B1 |
| B1ft | \& \& | Centre of mass from O |
| :--- |
| Moment of 15 N about O |
| Moment of weight about O, ft $\mathrm{cv}(\mathrm{OG})$ if used | \& \\

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{5 1}$

		M1		Uses moments, including 15 N and 20 N	
	$\begin{aligned} & 15 \mathrm{r} \cos (\pi / 3) \leqslant \\ & 20 \times 2 \mathrm{r} \sin (\pi / 3) / \pi \mathrm{x} \cos (\pi / 3-\theta) \end{aligned}$	A1ft		Accept $\prec,=, \succ$ as alternative to \leqslant	
	$\cos (\pi / 3-\theta) \geqslant 0.68(017 . .)$	A1		Accept $\succ,=, \prec$ as an alternative to	
	$\pi / 3-\theta \leqslant 0.82(279 .$.	M1		Solves for θ, equation or inequality	
	$\theta=0.224$	A1		Correct value	
	$\theta \geq 0.224$	A1	[9]	Correct sign, accept \succ SR deduct 1 mark for assuming r $=1$	[9]

