9709 s13 ms 51

Page	4	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2013	9709	51

1	(i)	$x = (20\cos 45)t$	B1		Or sin45, $1/\sqrt{2}$, 0.707	
		$y = (20\sin 45)t - gt^2/2$	B1	[2]	Or cos45, $1/\sqrt{2}$, 0.707.	
	(ii)	$y = (20\sin 45)(x/(20\cos 45)) -g[x/(20\cos 45)]^{2}/2$	M1		Substitutes $t = x/(20\cos 45)$ at least once	
		$y = x - x^2 / 40 \qquad \text{AG}$	A1	[2]	Only from $g = 10$	
	(iii)	x = 40 m	B1	[1]		[5]
2	(i)	$T = 19.2 \times (2.7 - 1.2)/1.2$	B1		T = 24 N	
		0.4a = 0.4g + T	M1		Newton's Second Law with 3 terms	
		$a = 70 m s^{-2}$	A1	[3]		
	(ii)	$19.2(2.7-1.2)^2/(2 \times 1.2)$	B1		Initial EE = 18	
			M1		For a 3 term energy equation	
		$0.4v^2/2 = 0.4g \times 2.7$ + 19.2 × (2.7 - 1.2) ² /(2 × 1.2)	A1			
		$v = 12 ms^{-1}$	A1	[4]		[7]
3	(i)		M1		Table of values or a moment equation	
		$0.2 \times 0.1 + 0.3 \times 0 = d(0.2+0.3)$	A1		Accept no mention of 0.3×0	
		d = 0.04 m	A1	[3]		
	(ii)	$4 \times 0.3 = 0.04 W$	M1		Moments about A	
		W = 30 N	A1ft	[2]	ft 1.2/cv(d(i))	
	(iii)	$\mu = 4/30$	M1		4/cv(W(ii))	
		$\mu = 0.133$	A1	[2]	Accept 2/15	[7]
4	(i)	a = 10 - 0.45v AG	B1	[1]	0.2a = 0.2g - 0.09v or similar should be seen	
	(ii)	$\int 1/(10-0.45v) dv = \int dt$	M1		An attempt at integration needed	
		$-\ln(10 - 0.45v)/0.45 = t (+c)$	A1			
		t = 0, v = 4, c = -4.67(58)	DM1		Attempts to find c or uses correct limits	
		$-\ln(10 - 0.45v)/0.45 = 1.5 - 4.676$	M1		Uses $t = 1.5$ and evaluated c	

	9709	s13	ms	51
--	------	-----	----	----

	Page \$	5	Ма	rk Sch	eme			Syllabus	<u>s13</u> Pap	
	- J -	-	GCE AS/A LE			ine 20	13	9709	51	
			2.0 ar 12.0		A 1	[5]				10
			2.9 or 13.0		A1	[5]				[6]
5	(i)	$\mathbf{v}_y =$	50sin40 - 2.5g		B1		Vertical con (=7.139)	nponent speed		
		$v^{2} = ($	$50\sin 40 - 2.5g)^2 + (50\cos 4)$	(40) ²	M1		Uses Pythag horizontal c	goras with correctory	et	
		v = 3	9(.0) ms ^{-1}		A1	[3]				
	(ii)	x = 50	0cos40 × 2.5		B1		Horizontal (=95.75)	displacement at 2	2.5s	
		$y = 50\sin 40 \times 2.5 - 2.5^2 \text{ g/}2$			B1		(=49.09)			
		an heta	= 49.09/95.75		M1		Appropriate	e ratio to find ang	gle	
		$\theta = 2$	27.1°		A1	[4]				[7]
6	(i)	Radia	al acc ^{<i>n</i>} = $1.2^2 / (0.2 \cos 30)$		B1		Radial acc "	$^{-2} = 8.31\mathrm{ms}^{-2}$		
		Tcos	$30 = 0.3 \times 1.2^2 / (0.2 \cos 30)$)	M1		Component m × radial a	a of tension = acc^{n}		
		T = 2	.88 N		A1	[3]				
	(ii) (a)	Tcos	60 = 0.3g		M1		Uses T max $R = 0$	in limiting case	when	
		T = 6	i		A1		May be imp	olied		
		6cos3	$30 = 0.3 \omega^2 (0.2 \cos 30)$		M1		-	of max $T =$ num radial acc ^{<i>n</i>}		
		ω =	10	AG	A1	[4]	From $g = 10$	0 only		
OR		Tcos	$30 = 0.3 \times 10^2 (0.2\cos 30)$		M1		Finds T ma	x from $m \times max$	(RA)	
		T = 6	i		A1					
		R + 6	$6\cos 60 = 0.3$ g		M1		Resolves ve	ertically with T n	nax	
) and a higher value of ω gative which is impossible		A1		Additional inequality	justification need	led of	
	(ii) (b)	KE =	$0.3(10 \times 0.2\cos 30)^2/2$		M1		Attempt at]	KE with $v = 10 >$	< radius	
		KE =	0.45 J		A1	[2]				[7]
7		OG =	$= 2rsin(\pi/3)/(3\pi/3)$		B1		Centre of m	ass from O		
		15rcc	$ps(\pi - 2\pi/3)$		B1		Moment of	15 N about O		
		20 ×	$OGcos(\pi/3-\theta)$		B1ft		Moment of cv(OG) if u	weight about O, sed	ft	

Page 6	Mark Sc	heme			Syllabus	Paper
	GCE AS/A LEVEL -	- May/Ju	ne 20)13	9709	51
		M1		Uses mome 20 N	nts, including 15	5 N and
	$\cos(\pi/3) \le \\ \times 2\operatorname{rsin}(\pi/3)/\pi \operatorname{xcos}(\pi/3 - \theta)$	A1ft		Accept ≺,=	=, ≻ as alternati	ive to \leq
cos	$(\pi/3 - \theta) \ge 0.68(017)$	A1		Accept \succ , =	=, ≺ as an alter	native to
π/	$3 - \theta \le 0.82(279)$	M1		Solves for <i>e</i> inequality	9, equation or	
θ :	= 0.224	A1		Correct valu	ie	
θ	≥ 0.224	A1	[9]	Correct sign SR deduct	n, accept ≻ 1 mark for assu	iming r