Pa		Mark Sohom	•		9709_s13_ms		
Γα	Page 4 Mark Schem GCE AS/A LEVEL – Ma			2013	Syllabus Paper 9709 43		
1	$[(W / g) a = W \sin \alpha - 0.02 W \cos \alpha]$				For using Newton's second law		
	a = (sin	$14^{\circ} - 0.02 \cos 14^{\circ}) g$ (= 2.225)	A1				
	$[v^2 = 8^2]$	$+ 2 \times 2.225 \dots \times 50$]	M1		For using $v^2 = u^2 + 2$ a s		
	Speed is	16.9 m s^{-1}	A1	[4]			
		Alternativ	e Schem	e			
1	WD aga	inst friction = $0.02 \text{ W} \cos \alpha \times 50$	B1				
	PE loss :	$=$ W \times 50 sin α	B1				
			M1		For using Gain in KE = Loss in Pl – WD against friction		
	Speed is	16.9 m s ⁻¹	A1	[4]			
2 (i)			M1		PE loss = B's loss – A's gain		
	Loss of]	$PE = 2g \times 3.24 - 1.6 g (3.24 \times 0.8)$	A1				
	Loss is 2	23.328 J.	A1	[3]	AG		
(ii)	1/2 (1.6 +	(2) $v^2 = 23.328$	B1				
	Speed is	3.6 m s^{-1}	B1	[2]			
					SR (max 1/2) for using Newton's second law and $v^2 = u^2 + 2 a s$ $2 g - T = 2 a and T - 1.6g \times 0.8$ = 1.6a a = 2 $v^2 = 2 \times 2 \times 3.24$ $v = 3.6 B1$		
3			M1		For using $DF = P / v$		
			M1		For using Newton's 2 nd law for both speeds / accelerations		
		14 - R = 800 x 1.4 and 25 - R = 800 x 0.33	A1				
			M1		For solving for P		
	P = 27.2		A1				
	R = 825		B1	[6]	Accept 825.5		

	Doo	10 F	Mark Sch	<u></u>		9709_s13	
	Page 5		GCE AS/A LEVEL –		iper 43		
		1					
4	(i)			M1		For integrating a (t) to obtain	v (t)
		V(t) = 1	$.5 t + 0.006 t^2$	A1		Constant of integration zero absent	or
		$t^2 + 250t$	+ 1.5 t - 90 = 0 ightarrow - 15000 = 0] ightarrow (t + 300) = 0]	DM1		For using v (t) = 90 and solvi t (dependent on integration)	ing for
		Leaves t	he ground when $t = 50$	A1	[4]		
	(ii)			M1		For integrating v (t) and usin 0 to candidate's answer for p	
		s = 0.75	$t^2 + 0.002 t^3$	A1ft		ft if there is a non-zero constr integration C in part (i) $s = 0.75 t^2 + 0.002 t^3 + C t$	ant of
		Distance	is 2125 m	A1ft	[3]	Accept 2120 or 2130 ft t from part (i) in $0.75 t^2 + 0.002$	2 t ³
5	(i)	[for P 17 and	$\begin{array}{l} 1.7 - 2 \ge 0.7] \\ t - 5 \ t^2 = 0 \\ = 5 \ t^2 = 0] \end{array}$	M1		T = 2 x time to max. height f 2 x time to max. height for Q or For using $T =$ time for P to return to ground – time for Q return to ground)
		T = 2		A1	[2]	SR (max 1/2) for candidates find difference in time to matheight T = 1.7 - 0.7 = 1 B1	
	(ii)			M1		For using $h_P - h_Q = 5$ and $s = u t - 5 t^2$ for both P and Q)
		17(t+2) $17t-5t^{2}$	$-5(t+2)^{2} - (7t - 5t^{2}) = 5 \text{ or} -7(t-2) + 5(t-2)^{2} = 5$				
				A1	ft	ft T from part (i)	
		t = 0.9 or	t = 2.9	A1			
				M1		For using $v = u - 10$ t for P a	nd Q

		970	9 s13 ms 4	13
Page 6	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2013	9709	43	

		$v_P = 17 - 10 (0.9 + 2),$ $v_Q = 7 - 10 \times 0.9 \Rightarrow$ Magnitudes are 12 m s ⁻¹ & 2 m s ⁻¹ The direction for both is vertically downwards	A1	ft [6]	ft using t_P and t_P-T or using t_Q and t_Q+T
6	(i)		M1		For resolving the applied forces on the box in the <i>x</i> -direction or the <i>y</i> - direction.
		$100 \cos 30^{\circ} + 120 \cos 60^{\circ} - F \cos \alpha = 136 (F \cos \alpha = 10.6025)$ or $100 \sin 30^{\circ} - 120 \sin 60^{\circ} + F \sin \alpha = 0$ (F sin \alpha = 53.9230) $100 \sin 30^{\circ} - 120 \sin 60^{\circ} + F \sin \alpha = 0$ (F sin \alpha = 53.9230) or $100 \cos 30^{\circ} + 120 \cos 60^{\circ} - F \cos \alpha = 136 (F \cos \alpha = 10.6025)$	A1 B1 M1		for using $F^2 = (F \cos \alpha)^2 + (F \sin \alpha)$ or $\tan \alpha = F \sin \alpha \div F \cos \alpha$
		$F = 55.0 \text{ or } \alpha = 78.9$	A1		
		$\alpha = 78.9 \text{ or } F = 55.0$	B1	[6]	
	(ii)	Magnitude is 136 N	B1		
		R = 40 g	B1		
		Coefficient is 0.34	B1	[3]	

							9 <u>_s13_ms_</u> 4
P	Page 7		Mark Scheme			Syllabus	Paper
			GCE AS/A LEVEL – M	ay/June 2	2013	9709	43
7 ((i)			M1		For applying Newton or to B	's 2 nd law to A
			7) 1.26 g = 1.26 a or $\Gamma = 0.9$ a	A1			
		•	$\Gamma = 0.9 \text{ a or}$ 7) 1.26 g = 1.26 a				
			(2 / 7) 1.26 g = $(0.9 + 1.26)$ a	B1			
		Acceler	ration is 2.5 m s ⁻²	B1		AG	
		Tensior	n is 6.75 N	A1	[5]		
(i	ii)	$[v^2 = 2$	\times (2.5) \times 0.45]	M1		For using $v^2 = 2 a h$	
		Speed i	s 1.5 m s ⁻¹	Al	[2]		
(ii	ii)	[-(2/7	7) 1.26 g = 1.26 a]	M1		For applying Newton	's 2 nd law to A
		a = - 20) / 7	A1			
		$[v^2 = 2.2]$	25 + 2 (-20 / 7) (0.03)]	M1		For using $v^2 = v_B^2 + 2$	a s
		Speed i	s 1.44 m s ⁻¹	Al	[4]		