Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	43

$\mathbf{1}$	$[(\mathrm{W} / \mathrm{g}) \mathrm{a}=\mathrm{W} \sin \alpha-0.02 \mathrm{~W} \cos \alpha]$ $\mathrm{a}=\left(\sin 14^{\circ}-0.02 \cos 14^{\circ}\right) \mathrm{g}$ $(=2.225 \ldots)$	M1		For using Newton's second law
	$\left[\mathrm{v}^{2}=8^{2}+2 \times 2.225 \ldots \times 50\right]$ Speed is $16.9 \mathrm{~m} \mathrm{~s}^{-1}$	M1		For using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ a s
	A1	$[4]$		

Alternative Scheme				
1	WD against friction $=0.02 \mathrm{~W} \cos \alpha \times 50$ $\mathrm{PE} \text { loss }=\mathrm{W} \times 50 \sin \alpha$ Speed is $16.9 \mathrm{~m} \mathrm{~s}^{-1}$	B1 B1 M1 A1	[4]	For using Gain in $\mathrm{KE}=$ Loss in PE - WD against friction
2 (i) (ii)	Loss of PE $=2 \mathrm{~g} \times 3.24$ $-1.6 \mathrm{~g}(3.24 \times 0.8)$ Loss is 23.328 J . $1 / 2(1.6+2) v^{2}=23.328$ Speed is $3.6 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 B1 B1	[3] [2]	PE loss $=$ B's loss - A's gain AG SR (max 1/2) for using Newton's second law and $v^{2}=u^{2}+2 a s$ $2 \mathrm{~g}-\mathrm{T}=2 \mathrm{a}$ and $\mathrm{T}-1.6 \mathrm{~g} \times 0.8$ $=1.6 \mathrm{a}$ $\mathrm{a}=2$ $\mathrm{v}^{2}=2 \times 2 \times 3.24 \quad \mathrm{v}=3.6 \mathrm{~B} 1$
3	$\begin{aligned} & 1000 \mathrm{P} / 14-\mathrm{R}=800 \times 1.4 \text { and } \\ & 1000 \mathrm{P} / 25-\mathrm{R}=800 \times 0.33 \\ & \mathrm{P}=27.2 \\ & \mathrm{R}=825 \end{aligned}$	M1 M1 A1 M1 A1 B1	[6]	For using $\mathrm{DF}=\mathrm{P} / \mathrm{v}$ For using Newton's $2^{\text {nd }}$ law for both speeds / accelerations For solving for P Accept 825.5

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	43

\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) \& \begin{tabular}{l}
\[
\mathrm{V}(\mathrm{t})=1.5 \mathrm{t}+0.006 \mathrm{t}^{2}
\]
\[
\begin{aligned}
\& {\left[0.006 \mathrm{t}^{2}+1.5 \mathrm{t}-90=0 \boldsymbol{\rightarrow}\right.} \\
\& \left.\mathrm{t}^{2}+250 \mathrm{t}-15000=0\right] \boldsymbol{\rightarrow} \\
\& (\mathrm{t}-50)(\mathrm{t}+300)=0]
\end{aligned}
\] \\
Leaves the ground when \(\mathrm{t}=50\)
\[
\mathrm{s}=0.75 \mathrm{t}^{2}+0.002 \mathrm{t}^{3}
\] \\
Distance is 2125 m
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
DM1 \\
A1 \\
M1 \\
A1ft \\
A1ft
\end{tabular} \& [4]

[3] \& | For integrating a (t) to obtain $\mathrm{v}(\mathrm{t})$ |
| :--- |
| Constant of integration zero or absent |
| For using $v(t)=90$ and solving for t (dependent on integration) |
| For integrating $\mathrm{v}(\mathrm{t})$ and using limits 0 to candidate's answer for part (i) |
| ft if there is a non-zero constant of integration C in part (i) $\mathrm{s}=0.75 \mathrm{t}^{2}+0.002 \mathrm{t}^{3}+\mathrm{Ct}$ |
| Accept 2120 or 2130 |
| ft t from part (i) in $0.75 \mathrm{t}^{2}+0.002 \mathrm{t}^{3}$ | \\

\hline | 5 (i) |
| :--- |
| (ii) | \& | $\begin{aligned} & {[\mathrm{T}=2 \times 1.7-2 \times 0.7]} \\ & {\left[\text { for } \mathrm{P} 17 \mathrm{t}-5 \mathrm{t}^{2}=0\right.} \\ & \text { and } \\ & \text { for } \left.\mathrm{Q} 7 \mathrm{t}=5 \mathrm{t}^{2}=0\right] \\ & \mathrm{T}=2 \end{aligned}$ |
| :--- |
| $17(t+2)-5(t+2)^{2}-\left(7 t-5 t^{2}\right)=5$ or $17 \mathrm{t}-5 \mathrm{t}^{2}-7(\mathrm{t}-2)+5(\mathrm{t}-2)^{2}=5$ $\mathrm{t}=0.9 \text { or } \mathrm{t}=2.9$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 |
| M1 | \& [2] \& | $\mathrm{T}=2 \mathrm{x}$ time to max. height for $\mathrm{P}-$ 2 x time to max. height for Q or For using $\mathrm{T}=$ time for P to return to ground - time for Q to return to ground |
| :--- |
| SR (max 1/2) for candidates who find difference in time to maximum height $\mathrm{T}=1.7-0.7=1 \quad \mathrm{~B} 1$ |
| For using $\mathrm{h}_{\mathrm{P}}-\mathrm{h}_{\mathrm{Q}}=5$ and $\mathrm{s}=\mathrm{ut}-5 \mathrm{t}^{2}$ for both P and Q |
| ft T from part (i) |
| For $u \operatorname{sing} \mathrm{v}=\mathrm{u}-10 \mathrm{t}$ for P and Q | \\

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 3}$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{v}_{\mathrm{P}}=17-10(0.9+2), \\
\& \quad \mathrm{v}_{\mathrm{Q}}=7-10 \times 0.9 \rightarrow \\
\& \text { Magnitudes are } 12 \mathrm{~m} \mathrm{~s}^{-1} \& 2 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
\] \\
The direction for both is vertically downwards
\end{tabular} \& \begin{tabular}{l}
A1 \\
A1
\end{tabular} \& ft
[6] \& ft using \(\mathrm{t}_{\mathrm{p}}\) and \(\mathrm{t}_{\mathrm{p}}-\mathrm{T}\) or using \(\mathrm{t}_{\mathrm{Q}}\) and \(\mathrm{t}_{\mathrm{Q}}+\mathrm{T}\) \\
\hline \begin{tabular}{l}
6 \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(100 \cos 30^{\circ}+120 \cos 60^{\circ}-\mathrm{F} \cos \alpha=\) \(136(\mathrm{~F} \cos \alpha=10.6025 \ldots\)) \\
or
\[
100 \sin 30^{\circ}-120 \sin 60^{\circ}+\mathrm{F} \sin \alpha=0
\] \\
(\(\mathrm{F} \sin \alpha=53.9230 \ldots\))
\[
100 \sin 30^{\circ}-120 \sin 60^{\circ}+\mathrm{F} \sin \alpha=0
\]
\[
(\mathrm{F} \sin \alpha=53.9230 \ldots)
\] \\
or
\[
100 \cos 30^{\circ}+120 \cos 60^{\circ}-\mathrm{F} \cos \alpha
\]
\[
=136(\mathrm{~F} \cos \alpha=10.6025 \ldots)
\]
\[
\begin{aligned}
\& \mathrm{F}=55.0 \text { or } \alpha=78.9 \\
\& \alpha=78.9 \text { or } \mathrm{F}=55.0
\end{aligned}
\] \\
Magnitude is 136 N
\[
\mathrm{R}=40 \mathrm{~g}
\] \\
Coefficient is 0.34
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
B1 \\
B1
\end{tabular} \& \([6]\)

$[3]$ \& | For resolving the applied forces on the box in the x-direction or the y direction. |
| :--- |
| for using $\mathrm{F}^{2}=(\mathrm{F} \cos \alpha)^{2}+(\mathrm{F} \sin \alpha)$ |
| or $\tan \alpha=\mathrm{F} \sin \alpha \div \mathrm{F} \cos \alpha$ | \\

\hline
\end{tabular}

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 3}$

$7 \quad$ (i)		M1		For applying Newton's $2^{\text {nd }}$ law to A or to B
	$\begin{aligned} & \mathrm{T}-(2 / 7) 1.26 \mathrm{~g}=1.26 \mathrm{a} \text { or } \\ & 0.9 \mathrm{~g}-\mathrm{T}=0.9 \mathrm{a} \end{aligned}$	A1		
	$\begin{aligned} & 0.9 \mathrm{~g}-\mathrm{T}=0.9 \mathrm{a} \text { or } \\ & \mathrm{T}-(2 / 7) 1.26 \mathrm{~g}=1.26 \mathrm{a} \end{aligned}$ or			
	$0.9 \mathrm{~g}-(2 / 7) 1.26 \mathrm{~g}=(0.9+1.26) \mathrm{a}$	B1		
	Acceleration is $2.5 \mathrm{~m} \mathrm{~s}^{-2}$	B1		AG
	Tension is 6.75 N	A1	[5]	
(ii)	[$\left.\mathrm{v}^{2}=2 \times(2.5) \times 0.45\right]$	M1		For using $\mathrm{v}^{2}=2 \mathrm{ah}$
	Speed is $1.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	[2]	
(iii)	[-(2/7) $1.26 \mathrm{~g}=1.26 \mathrm{a}$]	M1		For applying Newton's $2^{\text {nd }}$ law to A
	$\mathrm{a}=-20 / 7$	A1		
	$\left[\mathrm{v}^{2}=2.25+2(-20 / 7)(0.03)\right]$	M1		For using $\mathrm{v}^{2}=\mathrm{v}_{\mathrm{B}}{ }^{2}+2 \mathrm{as}$
	Speed is $1.44 \mathrm{~m} \mathrm{~s}^{-1}$	A1	[4]	

