	Page 4	Mark Scheme				Syllabus	9 <u>s13</u> ms_41 Paper		
	uge -		GCE AS/A LEVEL – May/June 2013				41		
1 (i)	Less than		B1						
	F = 1.25 V	F = 1.25W so $W < F$							
(ii)	[P-60 ×	$1.25 = 6 \times 4$]	M1		For applying	g Newton's second law.			
	P = 99	A1	[2]						
2	Increase i sin2.5°	B1							
	Decrease	Decrease in KE = $\frac{1}{2} 1250(30^2 - v_{top}^2)$							
	WD agair	WD against resistance = 400×600							
	[562500 - - 450000]	M1		÷	r using WD by DF = Increase in PE – decrea KE + WD against resistance				
	Speed is 2	26.7 ms^{-1}	A1	[5]					
Special Ru 4).	iling for can	didates who assume, without jus	tification	n, that t	he driving for	ce (DF) is consta	nt (maximum mar		
	$[DF - We = Mass \times$	eight component – Resistance Accel'n]	M1		For applying	Newton's secon	d law.		
	750 - 545	5 - 400 = 1250a	A1						
	$v^2 = 30^2 +$	B1ft		ft value of a					
	Speed is 2	26.7 ms^{-1}	B1	[4]					
3 (i)			M1		For using 0 =	= u ² – 2gs			
	$u^2 = 2 \times 1$	0×45 ; speed is 30ms^{-1}	A1	[2]					
(ii)	[40 = 30t	$-5t^2 \rightarrow t = 2, 4]$			For using $s = ut - \frac{1}{2} gt^2$ with $s = 40$, $u = t_2 - t_1$ or $s = ut + \frac{1}{2} gt^2$ $s = 5$, $u = 0$ and				
	$[5 = \frac{1}{2} 10]$	$t^2 \rightarrow t = 1$]	M1		T = 2t		5, u – 0 and		
	Time abo	ve the ground is 2 s	A1ft	[2]					
-	0	didates who assume, without jus num mark 1).	tification	n, that t	he length of ti	me required is th	at of the upward		
(ii)	$5 = \frac{1}{2} 10t$ required i	$t^2 \rightarrow t = 1$, the length of time s 1 s	B1	B1					
(iii)	Max. heig ÷ 4) (= 21	ght above top of cliff = $\frac{1}{2}$ g(17 1.25)	B1						
	$[0 = V^2 -$	2g(40 + 21.25)	M1		For using 0 =	= u ² – 2gs			
	Speed is ?	$25 m s^{-1}$	Δ1	[3]					

(ii)	$5 = \frac{1}{2} 10t^2 \rightarrow t = 1$, the length of time required is 1 s		B1	
(iii)	Max. height above top of cliff = $\frac{1}{2}$ g(17 ÷ 4) (= 21.25)			
	$[0 = V^2 - 2g(40 + 21.25)$	M1		For using $0 = u^2 - 2gs$
	Speed is 35 ms ⁻¹	A1	[3]	

		970	9 s13 ms 41
Page 5	Page 5 Mark Scheme		Paper
	GCE AS/A LEVEL – May/June 2013	9709	41

Alternative Marking Scheme for (iii)							
(iii)					For using $40 = Vt - 5t^2 \rightarrow$		
			M1		$t_2 - t_1 = \frac{1}{2} \frac{1}{2} \left(\frac{V}{5} + \sqrt{V^2/25 - 32} \right) - \frac{1}{2} \left(\frac{V}{5} - \sqrt{V^2/25 - 32} \right)$		
		$17 = V^2/25 - 32$	A1				
		Speed is 35 ms ⁻¹	A1	[3]			
4	(i)	DF = 1500 000/37.5 (= 40 000)	B1				
		[DF - R = ma]	M1		For using Newton's second law		
		DF - 30 000 = 400 000a	A1				
		Acceleration is 0.025 ms^{-2}	A1	[4]			
	(ii)	$[1500\ 000/v - 30\ 000 = 0]$	M1		For using Newton's 2^{nd} law with $a = 0$		
		Steady speed is 50 ms ⁻¹	A1	[2]			
5	(i)	$R = 2.6 \times (12 \div 13) (= 2.4)$	B1				
		$[F = 0.2 \times 2.4]$	M1		For using $F = \mu R$		
		$\begin{bmatrix} T - 2.6(5 \div 13) - F = 0.26a, 5.4 - T = \\ 0.54a \end{bmatrix}$	M1		For applying Newton's 2 nd law to A or to B.		
		For any two of $T - 1 - 0.48 = 0.26a$, 5.4 - $T = 0.54a$ or (5.4 - 1 - 0.48) = (0.54 + 0.26)a	A1				
		Acceleration is 4.9 ms^{-2}	B1				
		Tension is 2.75 N (2.754 exact)	A1	[6]			
	(ii)	$[s = \frac{1}{2} 4.9 \times 0.4^2]$	M1		For using $s = \frac{1}{2} at^2$		
		Distance is 0.392 m	A1	[2]			
6	(i)		M1		For resolving forces in the <i>x</i> and <i>y</i> directions (or for sketching a marked triangle of forces)		
		$F\cos\theta = 2.5 \times 24 \div 25 + 2.6 \times 5 \div 13$	A1		(= 3.4)		
		$F\sin\theta = 2.6 \times 12 \div 13 - 2.5 \times 7 \div 25$	A1		(= 1.7)		
			M1		For using $F^2 = (F\cos\theta)^2 + (F\sin\theta)^2$ to find F or $\tan\theta = F\sin\theta \div F\cos\theta$ to find θ		
		For $F = 3.80$ N or $tan\theta = 0.5$	A1				
		For $\tan\theta = 0.5$ or F = 3.80 N	B1	[6]			

			9709_s13_ms_41							
	F	Page 6	Mark Scheme			Syllabu	IS	Paper		
			GCE AS/A LEVEL	2013 9709		41				
	(ii)	[3.80 = 0.5a]		M1		For using Newton's 2 nd law with the magnitude the resultant force equal to the value of F found				
		Accelerati	ion is 7.60 ms^{-2}	A1ft		ft value of F found in (i) ft value of tanθ found in (i)				
		Direction <i>x</i> -axis.	is 26.6° clockwise from +ve	B1ft	[3]					
7	(i)	$[0.0000117(1200t^2 - 12t^3) = 0]$				For differentiating and s	olving	ds/dt = 0		
		$1200t^2 = 1$	$2t^3 \rightarrow t = 0,100$	A1		Accept just t = 100, if it AB.	is used	d to find dista	ince	
		Distance A	AB = 1170 m	A1	[3]					
	(ii)					For differentiating again	and so	olving d ² s/dt ²	$^{2} = 0$	
		2400t - 36	$6t^2 = 0 \rightarrow t = 0, 200/3$	A1		Accept just $t = 200/3$, if	it is us	sed to find v_m	ax•	
		$[\mathbf{v}_{\max}=0.0]$	$\frac{0000117\{1200(200/3)^2 - 12(200/3)^3\}]}{12(200/3)^3\}}$	M1		For substituting into v(t)				
		Maximum	n speed is 20.8 ms^{-1}	A1	[4]					
	(iii)	(iii) At A $a(t) = 0$		B1						
			= 7(2400 × 100 - 36 × 100 ²) = 2 (-1.404 exact)	B1	[2]					
	(iv)	Sketch has								
			maximum and decreasing to aximum closer to $t = 100$ than	B1						
			s zero gradient at $t = 0$ and closer to $t = 0$ than $t = 100$.	B1	[2]					