Page 4 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

1 (i) (ii)	Less than $\begin{aligned} & \mathrm{F}=1.25 \mathrm{~W} \text { so } \mathrm{W}<\mathrm{F} \\ & {[\mathrm{P}-60 \times 1.25=6 \times 4]} \\ & \mathrm{P}=99 \end{aligned}$	B1 B1 M1 A1	[2] [2]	For applying Newton's second law.
2	Increase in $\mathrm{PE}=1250 \times 10 \times 600$ $\sin 2.5^{\circ}$ Decrease in $\mathrm{KE}=1 / 21250\left(30^{2}-\mathrm{v}_{\text {top }}{ }^{2}\right)$ WD against resistance $=400 \times 600$ $\begin{aligned} & {\left[562500-625 \mathrm{v}_{\text {top }}^{2}=327145+240000\right.} \\ & -450000] \end{aligned}$ Speed is $26.7 \mathrm{~ms}^{-1}$	B1 B1 B1 M1 A1	[5]	For using WD by DF = Increase in PE - decrease in $\mathrm{KE}+\mathrm{WD}$ against resistance

Special Ruling for candidates who assume, without justification, that the driving force (DF) is constant (maximum mark 4).

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& {[\text { DF }- \text { Weight component }- \text { Resistance }} \\
\& =\text { Mass } \times \text { Accel'n] } \\
\& 750-545-400=1250 \mathrm{a} \\
\& \mathrm{v}^{2}=30^{2}+2 \times(-0.156) \times 600
\end{aligned}
\] \\
Speed is \(26.7 \mathrm{~ms}^{-1}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1ft \\
B1
\end{tabular} \& [4] \& \begin{tabular}{l}
For applying Newton's second law. \\
ft value of a
\end{tabular} \\
\hline \begin{tabular}{l}
3 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{u}^{2}=2 \times 10 \times 45 ; \text { speed is } 30 \mathrm{~ms}^{-1} \\
\& {\left[40=30 \mathrm{t}-5 \mathrm{t}^{2} \rightarrow \mathrm{t}=2,4\right]} \\
\& {\left[5=1 / 210 \mathrm{t}^{2} \rightarrow \mathrm{t}=1\right]}
\end{aligned}
\] \\
Time above the ground is 2 s
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1ft
\end{tabular} \& [2]

[2] \& | For using $0=u^{2}-2 g s$ |
| :--- |
| For using $s=u t-1 / 2$ gt 2 with $s=40, u=30$ and T $=t_{2}-t_{1}$ or $s=u t+1 / 2 \mathrm{gt}^{2} \mathrm{~s}=5, \mathrm{u}=0$ and $\mathrm{T}=2 \mathrm{t}$ | \\

\hline
\end{tabular}

Special Ruling for candidates who assume, without justification, that the length of time required is that of the upward movement only. (maximum mark 1).

(ii)	$5=1 / 210 \mathrm{t}^{2} \rightarrow \mathrm{t}=1$, the length of time required is 1 s	B1	B1	
(iii)Max. height above top of cliff $=1 / 2 \mathrm{~g}(17$ $\div 4)(=21.25)$ $\left[0=\mathrm{V}^{2}-2 \mathrm{~g}(40+21.25)\right.$ Speed is $35 \mathrm{~ms}^{-1}$	B1	M1	For using $0=\mathrm{u}^{2}-2 \mathrm{gs}$	

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	41

Alternative Marking Scheme for (iii)				
(iii)	$17=\mathrm{V}^{2} / 25-32$ Speed is $35 \mathrm{~ms}^{-1}$	M1 A1 A1	[3]	$\begin{aligned} & \text { For using } 40=\mathrm{Vt}-5 \mathrm{t}^{2} \rightarrow \\ & \mathrm{t}_{2}-\mathrm{t}_{1}= \\ & 1 / 2\left(\mathrm{~V} / 5+\sqrt{ }\left(\mathrm{V}^{2} / 25-32\right)-1 / 2\left(\mathrm{~V} / 5-\sqrt{ }\left(\mathrm{V}^{2} / 25-32\right)\right.\right. \end{aligned}$
4 (i) (ii)	$\begin{aligned} & \mathrm{DF}=1500000 / 37.5(=40000) \\ & {[\mathrm{DF}-\mathrm{R}=\mathrm{ma}]} \\ & \mathrm{DF}-30000=400000 \mathrm{a} \\ & \text { Acceleration is } 0.025 \mathrm{~ms}^{-2} \\ & {[1500000 / \mathrm{v}-30000=0]} \\ & \text { Steady speed is } 50 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4] [2]	For using Newton's second law For using Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$
5 (i) (ii)	$\begin{aligned} & \mathrm{R}=2.6 \times(12 \div 13)(=2.4) \\ & {[\mathrm{F}=0.2 \times 2.4]} \\ & {[\mathrm{T}-2.6(5 \div 13)-\mathrm{F}=0.26 \mathrm{a}, 5.4-\mathrm{T}=} \\ & 0.54 \mathrm{a}] \end{aligned}$ For any two of T $-1-0.48=0.26 a$, 5.4 $\begin{aligned} & -\mathrm{T}=0.54 \mathrm{a} \text { or } \\ & (5.4-1-0.48)=(0.54+0.26) \mathrm{a} \end{aligned}$ Acceleration is $4.9 \mathrm{~ms}^{-2}$ Tension is 2.75 N (2.754 exact) $\left[\mathrm{s}=1 / 24.9 \times 0.4^{2}\right]$ Distance is 0.392 m	B1 M1 M1 A1 B1 A1 M1 A1	[6] [2]	For using $F=\mu R$ For applying Newton's $2^{\text {nd }}$ law to A or to B. For using $\mathrm{s}=1 / 2 \mathrm{at}^{2}$
6 (i)	$F \cos \theta=2.5 \times 24 \div 25+2.6 \times 5 \div 13$ $F \sin \theta=2.6 \times 12 \div 13-2.5 \times 7 \div 25$ For $\mathrm{F}=3.80 \mathrm{~N}$ or $\tan \theta=0.5$ For $\tan \theta=0.5$ or $\mathrm{F}=3.80 \mathrm{~N}$	M1 A1 A1 M1 A1 B1	[6]	For resolving forces in the x and y directions (or for sketching a marked triangle of forces) $\begin{aligned} & (=3.4) \\ & (=1.7) \end{aligned}$ For using $\mathrm{F}^{2}=(\mathrm{F} \cos \theta)^{2}+(\mathrm{F} \sin \theta)^{2}$ to find F or $\tan \theta=\mathrm{F} \sin \theta \div \mathrm{F} \cos \theta$ to find θ

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

(ii)	$[3.80=0.5 \mathrm{a}]$ Acceleration is $7.60 \mathrm{~ms}^{-2}$ Direction is 26.6° clockwise from +ve x-axis.	M1 Alft B1ft	[3]	For using Newton's $2^{\text {nd }}$ law with the magnitude of the resultant force equal to the value of F found. ft value of F found in (i) ft value of $\tan \theta$ found in (i)
$\begin{array}{ll}7 & \text { (i) } \\ & \\ & \text { (ii) } \\ \\ & \text { (iii) } \\ \\ \text { (iv) }\end{array}$	$\begin{array}{r} {\left[\begin{array}{r} {\left[0.0000117\left(1200 \mathrm{t}^{2}-12 \mathrm{t}^{3}\right)\right.} \\ =0] \end{array}\right.} \\ 1200 \mathrm{t}^{2}=12 \mathrm{t}^{3} \rightarrow \mathrm{t}=0,100 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		For differentiating and solving $\mathrm{ds} / \mathrm{dt}=0$ Accept just $\mathrm{t}=100$, if it is used to find distance AB.
	Distance AB $=1170 \mathrm{~m}$	A1	[3]	
		M1		For differentiating again and solving $\mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}=0$
	$\left[\begin{array}{r} 2400 \mathrm{t}-36 \mathrm{t}^{2}=0 \rightarrow \mathrm{t}=0,200 / 3 \\ {\left[\mathrm{v}_{\text {max }}=0.0000117\left\{1200(200 / 3)^{2}\right.\right.} \\ \left.\left.-12(200 / 3)^{3}\right\}\right] \end{array}\right.$	A1 M1		Accept just $t=200 / 3$, if it is used to find $v_{\text {max }}$. For substituting into $\mathrm{v}(\mathrm{t})$
	Maximum speed is $20.8 \mathrm{~ms}^{-1}$	A1	[4]	
	At $\mathrm{A} \mathrm{a}(\mathrm{t})=0$	B1		
	$\begin{aligned} & \text { At } \mathrm{Ba}(\mathrm{t})= \\ & 0.0000117\left(2400 \times 100-36 \times 100^{2}\right)= \\ & -1.40 \mathrm{~ms}^{-2}(-1.404 \text { exact }) \end{aligned}$	B1	[2]	
	Sketch has vincreasing from 0 to maximum and decreasing to 0 , with maximum closer to $t=100$ than $\mathrm{t}=0$.	B1		
	Sketch has zero gradient at $\mathrm{t}=0$ and inflexion closer to $\mathrm{t}=0$ than $\mathrm{t}=100$.	B1	[2]	

