Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	33

1 EITHER: State or imply non-modular inequality $(4 x+3)^{2}>x^{2}$, or corresponding equation or pair of equations $4 x+3= \pm x$
Obtain a critical value, e.g. -1
Obtain a second critical value, e.g. $-\frac{3}{5}$
State final answer $x<-1, x>-\frac{3}{5}$

OR: \quad Obtain critical value $x=-1$, by solving a linear equation or inequality, or from a graphical method or by inspection
Obtain the critical value $-\frac{3}{5}$ similarly
State final answer $x<-1, x>-\frac{3}{5}$
B1
[Do not condone \leq or \geq.]

2 Use law for the logarithm of a product, quotient or power M1
Use $\ln \mathrm{e}=1$ or $\exp (1)=3$ M1
Obtain correct equation free of logarithms in any form, e.g. $\frac{y+1}{y}=\mathrm{e} x^{3}$
Rearrange as $y=\left(e x^{3}-1\right)^{-1}$, or equivalent

3 Use correct $\tan 2 A$ formula and $\cot x=1 / \tan x$ to form an equation in $\tan x$
Obtain a correct horizontal equation in any form
Solve an equation in $\tan ^{2} x$ for x
Obtain answer, e.g. 40.2°
Obtain second answer, e.g. 139.8°, and no other in the given interval
[Ignore answers outside the given interval.]
[Treat answers in radians as a misread and deduct A1 from the marks for the angles.]
[SR: For the answer $x=90^{\circ}$ give B1 and A1 for one of the other angles.]

4 (i) State $R=2$
Use trig formula to find α
Obtain $\alpha=\frac{1}{6} \pi$ with no errors seen
(ii) Substitute denominator of integrand and state integral $k \tan (x-\alpha)$

State correct indefinite integral $\frac{1}{4} \tan \left(x-\frac{1}{6} \pi\right)$
Substitute limits
Obtain the given answer correctly

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	33

$5 \quad$ (i) Substitute $x=-\frac{1}{2}$, or divide by $(2 x+1)$, and obtain a correct equation, e.g. $a-2 b+8=0 \quad$ B1
Substitute $x=\frac{1}{2}$ and equate to 1 , or divide by $(2 x-1)$ and equate constant remainder to 1
Obtain a correct equation, e.g. $a+2 b+12=0$
A1
Solve for a or for b M1
Obtain $a=-10$ and $b=-1$ A1
(ii) Divide by $2 x^{2}-1$ and reach a quotient of the form $4 x+k$

Obtain quotient $4 x-5$
Obtain remainder $3 x-2$

6 (i) State the correct derivatives $2 \mathrm{e}^{2 x-3}$ and $2 / x$
Equate derivatives and use a law of logarithms on an equation equivalent to $k \mathrm{e}^{2 x-3}=m / x$
Obtain the given result correctly (or work vice versa)
(ii) Consider the sign of $a-\frac{1}{2}(3-\ln a)$ when $a=1$ and $a=2$, or equivalent M1

Complete the argument with correct calculated values
(iii) Use the iterative formula correctly at least once

Obtain final answer 1.35
Show sufficient iterations to 4 d.p. to justify 1.35 to 2 d.p., or show there is a sign change in the interval $(1.345,1.355)$

7 (i) Show that $a^{2}+b^{2}=(a+\mathrm{i} b)(a-\mathrm{i} b)$
Show that $(a+\mathrm{i} b-k \mathrm{i})^{*}=a-\mathrm{i} b+k \mathrm{i}$
(ii) Square both sides and express the given equation in terms of z and z^{*}

Obtain a correct equation in any form, e.g. $(z-10 i)\left(z^{*}+10 i\right)=4(z-4 i)\left(z^{*}+4 i\right)$
Obtain the given equation
Either express $|z-2 i|=4$ in terms of z and z^{*} or reduce the given equation to the form $|z-u|=r$
Obtain the given answer correctly
(iii) State that the locus is a circle with centre 2 i and radius 5 A1

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	33

8 (i) Separate variables correctly and integrate at least one side $\begin{aligned} & \text { Obtain term } \ln t \text {, or equivalent }\end{aligned}$
Obtain term of the form $a \ln \left(k-x^{3}\right)$ M1
Obtain term $-\frac{2}{3} \ln \left(k-x^{3}\right)$, or equivalent
EITHER: Evaluate a constant or use limits $t=1, x=1$ in a solution containing $a \ln t$ and
$b \ln \left(k-x^{3}\right)$

M1* A1

M1(dep*) A1

OR: Using limits $t=1, x=1$ and $t=4, x=2$ in a solution containing $a \ln t$ and $b \ln \left(k-x^{3}\right)$ obtain an equation in k

M1*
A1
M1(dep*) A1

Substitute $k=9$ and obtain $x=\left(9-8 t^{-\frac{3}{2}}\right)^{\frac{1}{3}}$
A1
(ii) State that x approaches $9^{\frac{1}{3}}$, or equivalent

B1 \downarrow

10 (i) Equate scalar product of direction vector of l and p to zero
Solve for a and obtain $a=-6$
(ii) Express general point of l correctly in parametric form, e.g. $3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\mu(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k})$ or $(1-\mu)(3 \mathbf{i}+2 \mathbf{j}+\mathbf{k})+\mu(\mathbf{i}+\mathbf{j}-\mathbf{k})$
Equate at least two pairs of corresponding components of l and the second line and solve for λ or for μ
Obtain either $\lambda=\frac{2}{3}$ or $\mu=\frac{1}{3}$; or $\lambda=\frac{2}{a-1}$ or $\mu=\frac{1}{a-1}$; or reach $\lambda(a-4)=0$
or $(1+\mu)(a-4)=0$
Obtain $a=4$ having ensured (if necessary) that all three component equations are satisfied

A1 A1 M1
A1
Obtain correct derivative in any form, e.g. $4 \sin 2 x \cos 2 x \cos x-\sin ^{2} 2 x \sin x$
Equate derivative to zero and use a double angle formula M1 (dep*)
Reduce equation to one in a single trig function A1
e.g. $10 \cos ^{3} x=6 \cos x, 4=6 \tan ^{2} x$ or $4=10 \sin ^{2} x$
Solve and obtain $x=0.685$
(ii) Using $\mathrm{d} u= \pm \cos x \mathrm{~d} x$, or equivalent, express integral in terms of u and $\mathrm{d} u$
Obtain $\int 4 u^{2}\left(1-u^{2}\right) \mathrm{d} u$, or equivalent
Use limits $u=0$ and $u=1$ in an integral of the form $a u^{3}+b u^{5}$
Obtain answer $\frac{8}{15}$ (or 0.533)

M1
(i) Use product rule 1
Obtain a correct equation in any form,

Mage 7 Scheme			
	GCE AS/A LEVEL - May/June 2013	$\mathbf{S y l l a b u s}$	Paper

(iii) Using the correct process for the moduli, divide scalar product of direction vector if l and normal to p by the product of their moduli and equate to the sine of the given angle, or form an equivalent horizontal equation
Use $\frac{2}{\sqrt{5}}$ as sine of the angle
State equation in any form, e.g. $\frac{a+6}{\sqrt{\left(a^{2}+4+1\right)} \sqrt{(1+4+4)}}=\frac{2}{\sqrt{5}}$
Solve for a
M1 (dep*)
Obtain answers for $a=0$ and $a=\frac{60}{31}$, or equivalent
[Allow use of the cosine of the angle to score M1M1.]

