Page 4	4 Mark Scheme Sy	llabus Pape	<u>ms 3</u> er
Ŭ		9709 32	
EITHEI	<i>EITHER</i> : State or imply non-modular equation $(x-2)^2 = \left(\frac{1}{3}x\right)^2$,		
	or pair of equations $x - 2 = \pm \frac{1}{3}x$	M1	
	Obtain answer $x = 3$	A1	
	Obtain answer $x = \frac{3}{2}$, or equivalent	A1	
OR:	Obtain answer $x = 3$ by solving an equation or by inspection	B1	
	State or imply the equation $x - 2 = -\frac{1}{3}$, or equivalent	M1	
	Obtain answer $x = \frac{3}{2}$, or equivalent	A1	[3
(i)	Use the iterative formula correctly at least once Obtain final answer 3.6840	M1 A1	
	Show sufficient iterations to at least 6 d.p. to justify 3.6840, or show the change in the interval (3.68395, 3.68405)	re is a sign A1	[3
(ii)	State a suitable equation, e.g. $x = \frac{x(x^3 + 100)}{2(x^3 + 25)}$	B1	
	State that the value of α is $3\sqrt{50}$, or exact equivalent	B1	[2
EITHEI	R: State or imply $\ln y = \ln A - kx^2$ Substitute values of $\ln y$ and x^2 , and solve for k or $\ln A$ Obtain $k = 0.42$ or $A = 2.80$ Solve for $\ln A$ or k Obtain $A = 2.80$ or $k = 0.42$	B1 M1 A1 M1 A1	
OR1:	State or imply $\ln y = \ln A - kx^2$ Using values of $\ln y$ and x^2 , equate gradient of line to $-k$ and solve for k Obtain $k = 0.42$ Solve for $\ln A$ Obtain $A = 2.80$	B1 M1 A1 M1 A1	
OR2:	Obtain two correct equations in k and A and substituting y- and x^2 - value $y = Ae^{-kx^2}$ Solve for k Obtain $k = 0.42$ Solve for A Obtain $A = 2.80$ [SR: If unsound substitutions are made, e.g. using $x = 0.;64$ and $y = 0.766$	B1 M1 A1 M1 A1	

Page	e 5	Mark Scheme Syllabus	s13_m Paper	
		GCE AS/A LEVEL – May/June 2013 9709	32	
		1		
(i)	Subs	titute $x = -\frac{1}{3}$, or divide by $3x + 1$, and obtain a correct equation,		
	e.g	$-\frac{1}{27}a - \frac{20}{9} - \frac{1}{3} + 3 = 0$	B1	
	Solv	e for <i>a</i> an equation obtained by a valid method	M1	
	Obta	in $a = 12$	A1	[3
(ii)	Com	mence division by $3x + 1$ reaching a partial quotient $\frac{1}{3}ax^2 + kx$	M1	
	Obta	in quadratic factor $4x^2 - 8x + 3$	A1	
		in factorisation $(3x+1)(2x-1)(2x-3)$	A1	[3
	[The	M1 is earned if inspection reaches an unknown factor $\frac{1}{3}ax^2 + Bx + C$ and an		
		tion in <i>B</i> and/or <i>C</i> , or an unknown factor $Ax^2 + Bx + 3$ and an equation in <i>A</i>		
		or <i>B</i> , or if two coefficients with the correct moduli are stated without working.] near factors are found by the factor theorem, give B1B1 for $(2x - 1)$ and		
	(2x -	- 3), and B1 for the complete factorisation.] thetic division giving $12x^2 - 24x + 9$ as quadratic factor earns M1A1, but the		
		factorisation needs $(x + \frac{1}{3})$, or equivalent, in order to earn the second A1.]		
		1		
		If $x = \frac{1}{3}$ is used in substitution or synthetic division, give the M1 in part (i) but		
	give	M0 in part (ii).]		
S EITH	ER: State	$2ay\frac{dy}{dr}$ as derivative of ay^2	B1	
			21	
	State	$y^2 + 2xy \frac{dy}{dx}$ as derivative of xy^2	B1	
	Equa	the derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	M1	
	Obta	in $3x^2 + y^2 - 6ax = 0$, or horizontal equivalent	A1	
		inate y and obtain an equation in x	M1	
	Solv	e for x and obtain answer $x = \sqrt{3}a$	A1	
OR1:	Rear	range equation in the form $y^2 = \frac{3ax^2 - x^3}{x + a}$ and attempt differentiation of one		
	side	x + u	B1	
		correct quotient or product rule to differentiate RHS	M1	
		in correct derivative of RHS in any form dy	A1	
		$\frac{dy}{dx}$ equal to zero and obtain an equation in x	M1	
		in a correct horizontal equation free of surds e for x and obtain answer $x = \sqrt{3a}$	A1 A1	
	5010	e for x and obtain answer $x = \sqrt{3a}$	AI	
<i>OR2</i> :	Rear	range equation in the form $y = \left(\frac{3ax^2 - x^3}{x + a}\right)^{\frac{1}{2}}$ and differentiation of RHS	B1	
		correct quotient or product rule and chain rule	M1	
	Obta	in correct derivative in any form	A1	
		© Cambridge International Examinations 2013		

Page 6		6	Mark Scheme Syllabus	Paper	<u>s_3</u> 2
	j -	-	GCE AS/A LEVEL – May/June 2013 9709	32	
			te derivative to zero and obtain an equation in x	M1	
			in a correct horizontal equation free of surds	A1	
		Solve	e for x and obtain answer $x = \sqrt{3a}$	A1	[6]
	(i)		correct quotient or chain rule to differentiate sec x	M1	
			in given derivative, sec x tan x, correctly	A1 M1	
			chain rule to differentiate y	M1 A1	Г / Т
		Obla	in the given answer	AI	[4]
	(ii)	Usin	g d $x\sqrt{3}\sec^2\theta d\theta$, or equivalent, express integral in terms of θ and d θ	M1	
		Obta	in $\int \sec\theta \mathrm{d}\theta$	A1	
		Use	imits $\frac{1}{6}\pi$ and $\frac{1}{3}\pi$ correctly in an integral form of the form $k \ln(\sec\theta + \tan\theta)$	M1	
		Obta	in a correct exact final answer in the given form, e.g. $\ln\left(\frac{2+\sqrt{3}}{\sqrt{3}}\right)$	A1	[4]
	(i)	Use o	$\cos (A + B)$ formula to express the given expression in terms of $\cos x$ and $\sin x$	M1	
	()				
		Colle	ect terms and reach $\frac{\cos x}{\sqrt{2}} - \frac{3}{\sqrt{2}} \sin x$, or equivalent	A1	
		Obta	in $R = 2.236$	A1	
		Use t	rig formula to find α	M1	
		Obta	in $\alpha = 71.57^{\circ}$ with no errors seen	A1	[5]
	(ii)	Eval	uate $\cos^{-1}(2/2.236)$ to at least 1 d.p. (26.56° to 2 d.p., use of $R = \sqrt{5}$ gives		
		26.57	7°)	B1√^	
		Carry	y out an appropriate method to find a value of x in the interval $0^{\circ} < x < 360^{\circ}$	M1	
			in answer, e.g. $x = 315^{\circ} (315.0^{\circ})$	A1	
			in second answer, e.g. 261.9° and no others in the given interval	A1	[4]
			re answers outside the given range.]		
		-	tt answers in radians as a misread and deduct A1 from the answers for the		
		angle [SR·	Conversion of the equation to a correct quadratic in sin x, cos x, or tan x earns		
			hen M1 for solving a 3-term quadratic and obtaining a value of x in the given		
			val, and $A1 + A1$ for the two correct answers (candidates must reject spurious		
		roots	to earn the final A1).]		
3 (i)		TT	any valouent method to determine a constant	N / 1	
	(i)		any relevant method to determine a constant in one of the values $A = 1, B = -2, C = 4$	M1 A1	
			in one of the values $A = 1, B = -2, C = 4$	A1 A1	
			in the third value	A1	[4]
		[If A	and C are found by the cover up rule, give $B1 + B1$ then M1A1 for finding B. If one is found by the rule, give B1M1A1A1.]		
	(ii)	Sepa	rate variables and obtain one term by integrating $\frac{1}{y}$ or a partial fraction	M1	
			in $\ln y = -\frac{1}{2} - 2 \ln (2x + 1) + c$, or equivalent		

Page 7			Mark Scheme Syllabus	<u>9_s13_m</u> Paper	_
			GCE AS/A LEVEL – May/June 2013 9709	32	
		terms	tate a constant, or use limits $x = 1$, $y = 1$, in a solution containing at least three s of the form $k \ln y$, l/x , $m \ln x$ and $n \ln (2x + 1)$, or equivalent	ee M1	
			in solution $\ln y = -\frac{1}{2} - 2\ln x + 2\ln(2x+1) + c$, or equivalent	A1	
		Subst	titute $x = 2$ and obtain $y = \frac{25}{36}e^{\frac{1}{2}}$, or exact equivalent free of logarithms	A1	[7
		(The integ	f.t. is on <i>A</i> , <i>B</i> , <i>C</i> . Give $A2\sqrt[4]{}$ if there is only one error or omission in the ration; $A1\sqrt[4]{}$ if two.)		
9 (a)	(a)		titute $w = x + iy$ and state a correct equation in x and y	B1	
			$y^2 = -1$ and equate real parts in $y = -2$	M1 A1	
			te imaginary parts and solve for x	M1	
		-	in $x = 2\sqrt{2}$, or equivalent, only	A1	[:
	(b)		y a circle with centre 2i y a circle with radius 2	B1 B1	
			what had the from -2 at $\frac{1}{4}\pi$ to real axis	B1	
			e the correct region	B1	
			v out a complete method for calculating the greatest value of $ z $	M1	
		Obtai	in answer 3.70	A1	[
0	(i)		<i>v</i> out a correct method for finding a vector equation for <i>AB</i> in $\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} + \lambda (3\mathbf{i} + \mathbf{j} - \mathbf{k})$ or	M1	
			$\iota (2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) + (1 - \mu)(5\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, or equivalent	A1	
			titute components in equation of <i>p</i> and solve for λ or for μ	M1	
		Obtai	in $\lambda = \frac{3}{2}$ or $\mu = -\frac{1}{2}$ and final answer $\frac{13}{2}\mathbf{i} - \frac{3}{2}\mathbf{j} + \frac{1}{2}\mathbf{k}$, or equivalent	A1	['
	(ii)		r equate scalar product of direction vector of AB and normal to q to zero or	M1*	
		Obtai	itute for A and B in the equation of q and subtract expressions in $3 + b - c = 0$, or equivalent g the correct method for the moduli, divide the scalar product of the normals	M1* A1	
		p and	$1 q$ by the product of their moduli and equate to $\pm \frac{1}{2}$, or form horizontal		
			zalent	M1*	
		Obtai	in correct equation in any form, e.g. $\frac{1+b}{\sqrt{(1+b^2+c^2)}\sqrt{(1+1)}} = \pm \frac{1}{2}$	A1	
				M1 (dep*)	
			in $b = -4$ and $c = -1$	A1 A1√ [≜]	۲ <i>י</i>
			a relevant point and obtain final answer $x - 4y - z = 12$, or equivalent f.t. is on <i>b</i> and <i>c</i> .)	AI₹	[́