| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 32 |

1 EITHER: State or imply non-modular equation $(x-2)^{2}=\left(\frac{1}{3} x\right)^{2}$,
or pair of equations $x-2= \pm \frac{1}{3} x$
M1

Obtain answer $x=3$
Obtain answer $x=\frac{3}{2}$, or equivalent

OR: $\quad$ Obtain answer $x=3$ by solving an equation or by inspection
State or imply the equation $x-2=-\frac{1}{3}$, or equivalent M1

Obtain answer $x=\frac{3}{2}$, or equivalent A1

2 (i) Use the iterative formula correctly at least once
Obtain final answer 3.6840
Show sufficient iterations to at least 6 d.p. to justify 3.6840 , or show there is a sign change in the interval $(3.68395,3.68405)$

State that the value of $\alpha$ is $3 \sqrt{50}$, or exact equivalent

3 EITHER: State or imply $\ln y=\ln A-k x^{2} \quad$ B1
Substitute values of $\ln y$ and $x^{2}$, and solve for $k$ or $\ln A$ M1
Obtain $k=0.42$ or $A=2.80$ A1
Solve for $\ln A$ or $k$ M1
Obtain $A=2.80$ or $k=0.42$ A1

OR1: $\quad$ State or imply $\ln y=\ln A-k x^{2}$
B1
Using values of $\ln y$ and $x^{2}$, equate gradient of line to $-k$ and solve for $k \quad$ M1
Obtain $k=0.42$
A1
Solve for $\ln A$ M1
Obtain $A=2.80$ A1

OR2: Obtain two correct equations in $k$ and $A$ and substituting $y-$ and $x^{2}-$ values in
$y=A \mathrm{e}^{-k x^{2}}$
B1
Solve for $k$ M1
Obtain $k=0.42 \quad$ A1
Solve for $A$ M1
Obtain $A=2.80$ A1
[SR: If unsound substitutions are made, e.g. using $x=0 . ; 64$ and $y=0.76$, give B1M0A0M1A0 in the EITHER and OR1 schemes, and B0M1A0M1A0 in the OR2 scheme.]

| Page 5 Mark Scheme | Syllabus | Paper |  |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 32 |

4 (i) Substitute $x=-\frac{1}{3}$, or divide by $3 x+1$, and obtain a correct equation,
e.g. $-\frac{1}{27} a-\frac{20}{9}-\frac{1}{3}+3=0$

B1
Solve for $a$ an equation obtained by a valid method M1
Obtain $a=12$ A1
(ii) Commence division by $3 x+1$ reaching a partial quotient $\frac{1}{3} a x^{2}+k x$

Obtain quadratic factor $4 x^{2}-8 x+3$
Obtain factorisation $(3 x+1)(2 x-1)(2 x-3)$
[The M1 is earned if inspection reaches an unknown factor $\frac{1}{3} a x^{2}+B x+C$ and an equation in $B$ and/or $C$, or an unknown factor $A x^{2}+B x+3$ and an equation in $A$ and/or $B$, or if two coefficients with the correct moduli are stated without working.] [If linear factors are found by the factor theorem, give B1B1 for $(2 x-1)$ and ( $2 x-3$ ), and B1 for the complete factorisation.]
[Synthetic division giving $12 x^{2}-24 x+9$ as quadratic factor earns M1A1, but the final factorisation needs $\left(x+\frac{1}{3}\right)$, or equivalent, in order to earn the second A1.]
[SR: If $x=\frac{1}{3}$ is used in substitution or synthetic division, give the M1 in part (i) but give M0 in part (ii).]

5 EITHER: State $2 a y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $a y^{2}$ B1

State $y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $x y^{2}$ B1

Equate derivative of LHS to zero and set $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero M1

Obtain $3 x^{2}+y^{2}-6 a x=0$, or horizontal equivalent A1
Eliminate $y$ and obtain an equation in $x$ M1
Solve for $x$ and obtain answer $x=\sqrt{3} a$ A1

OR1: Rearrange equation in the form $y^{2}=\frac{3 a x^{2}-x^{3}}{x+a}$ and attempt differentiation of one side
Use correct quotient or product rule to differentiate RHS M1
Obtain correct derivative of RHS in any form A1
Set $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero and obtain an equation in $x$ M1

Obtain a correct horizontal equation free of surds A1
Solve for $x$ and obtain answer $x=\sqrt{3 a}$
OR2: $\quad$ Rearrange equation in the form $y=\left(\frac{3 a x^{2}-x^{3}}{x+a}\right)^{\frac{1}{2}}$ and differentiation of RHS
Use correct quotient or product rule and chain rule
Obtain correct derivative in any form

| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 32 |

Equate derivative to zero and obtain an equation in $x \quad$ M1
Obtain a correct horizontal equation free of surds A1
Solve for $x$ and obtain answer $x=\sqrt{3 a}$

6 (i) Use correct quotient or chain rule to differentiate $\sec x$
Obtain given derivative, $\sec x \tan x$, correctly A1
Use chain rule to differentiate $y$ M1
Obtain the given answer A1
(ii) Using $\mathrm{d} x \sqrt{3} \sec ^{2} \theta \mathrm{~d} \theta$, or equivalent, express integral in terms of $\theta$ and $\mathrm{d} \theta$

Obtain $\int \sec \theta \mathrm{d} \theta$
Use limits $\frac{1}{6} \pi$ and $\frac{1}{3} \pi$ correctly in an integral form of the form $k \ln (\sec \theta+\tan \theta)$ M1

Obtain a correct exact final answer in the given form, e.g. $\ln \left(\frac{2+\sqrt{3}}{\sqrt{3}}\right)$

7 (i) Use $\cos (A+B)$ formula to express the given expression in terms of $\cos x$ and $\sin x$
Collect terms and reach $\frac{\cos x}{\sqrt{2}}-\frac{3}{\sqrt{2}} \sin x$, or equivalent
Obtain $R=2.236$
Use trig formula to find $\alpha \quad$ M1
Obtain $\alpha=71.57^{\circ}$ with no errors seen A1
(ii) Evaluate $\cos ^{-1}(2 / 2.236)$ to at least 1 d.p. $\left(26.56^{\circ}\right.$ to 2 d.p., use of $R=\sqrt{5}$ gives $26.57^{\circ}$ )
Carry out an appropriate method to find a value of $x$ in the interval $0^{\circ}<x<360^{\circ}$
Obtain answer, e.g. $x=315^{\circ}\left(315.0^{\circ}\right)$
Obtain second answer, e.g. $261.9^{\circ}$ and no others in the given interval
[Ignore answers outside the given range.]
[Treat answers in radians as a misread and deduct A1 from the answers for the angles.]
[SR: Conversion of the equation to a correct quadratic in $\sin x, \cos x$, or $\tan x$ earns B 1 , then M1 for solving a 3-term quadratic and obtaining a value of $x$ in the given interval, and A1 + A1 for the two correct answers (candidates must reject spurious roots to earn the final A1).]

8 (i) Use any relevant method to determine a constant
M1
Obtain one of the values $A=1, B=-2, C=4$
A1
Obtain a second value
Obtain the third value
only one is found by the rule, give B1M1A1A1.]
(ii) Separate variables and obtain one term by integrating $\frac{1}{y}$ or a partial fraction

Obtain $\ln y=-\frac{1}{2}-2 \ln (2 x+1)+c$, or equivalent

| Page 7 Mark Scheme | Syllabus | Paper |  |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 32 |

Evaluate a constant, or use limits $x=1, y=1$, in a solution containing at least three terms of the form $k \ln y, l / x, m \ln x$ and $n \ln (2 x+1)$, or equivalent
Obtain solution $\ln y=-\frac{1}{2}-2 \ln x+2 \ln (2 x+1)+c$, or equivalent
Substitute $x=2$ and obtain $y=\frac{25}{36} \mathrm{e}^{\frac{1}{2}}$, or exact equivalent free of logarithms
(The f.t. is on $A, B, C$. Give $\mathrm{A} 2 \sqrt{ }$ if there is only one error or omission in the integration; $A 1 \sqrt{ }$ if two.)

9 (a) Substitute $w=x+\mathrm{i} y$ and state a correct equation in $x$ and $y$
Use $\mathrm{i}^{2}=-1$ and equate real parts
Obtain $y=-2$
A1
Equate imaginary parts and solve for $x$ M1

Obtain $x=2 \sqrt{2}$, or equivalent, only A1
(b) Show a circle with centre 2 i

Show a circle with radius 2
Show half line from -2 at $\frac{1}{4} \pi$ to real axis
Shade the correct region
Carry out a complete method for calculating the greatest value of $|z|$
Obtain answer 3.70

Obtain $\mathbf{r}=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}+\lambda(3 \mathbf{i}+\mathbf{j}-\mathbf{k})$ or $\mathbf{r}=\mu(2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+(1-\mu)(5 \mathbf{i}-2 \mathbf{j}+\mathbf{k})$, or equivalent
Substitute components in equation of $p$ and solve for $\lambda$ or for $\mu$
Obtain $\lambda=\frac{3}{2}$ or $\mu=-\frac{1}{2}$ and final answer $\frac{13}{2} \mathbf{i}-\frac{3}{2} \mathbf{j}+\frac{1}{2} \mathbf{k}$, or equivalent
(ii) Either equate scalar product of direction vector of $A B$ and normal to $q$ to zero or substitute for $A$ and $B$ in the equation of $q$ and subtract expressions
Obtain $3+b-c=0$, or equivalent
Using the correct method for the moduli, divide the scalar product of the normals to $p$ and $q$ by the product of their moduli and equate to $\pm \frac{1}{2}$, or form horizontal
equivalent
Obtain correct equation in any form, e.g. $\frac{1+b}{\sqrt{\left(1+b^{2}+c^{2}\right)} \sqrt{(1+1)}}= \pm \frac{1}{2}$

Solve simultaneous equations for $b$ or for $c$
Use a relevant point and obtain final answer $x-4 y-z=12$, or equivalent

