Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	31

1 Carry out division or equivalent at least as far as two terms of quotient
Obtain quotient $2 x-4$
Obtain remainder 8

2 Obtain $1-x$ as first two terms of $(1+2 x)^{-\frac{1}{2}}$
Obtain $+\frac{3}{2} x^{2}$ or unsimplified equivalent as third term of $(1+2 x)^{-\frac{1}{2}}$
Multiply $1+3 x$ by attempt at $(1+2 x)^{-\frac{1}{2}}$, obtaining sufficient terms
Obtain final answer $1+2 x-\frac{3}{2} x^{2}$

3 State or imply correct form $\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
Use any relevant method to find at least one constant
Obtain $A=2$
Obtain $B=5$
Obtain $C=-3$ A1

4 (i) Either State or imply non-modular equation $(4 x-1)^{2}=(x-3)^{2}$ or pair of linear equations $4 x-1= \pm(x-3)$
Solve a three-term quadratic equation or two linear equations M1
Obtain $-\frac{2}{3}$ and $\frac{4}{5}$

Or Obtain value $-\frac{2}{3}$ from inspection or solving linear equation
Obtain value $\frac{4}{5}$ similarly
(ii) State or imply at least $4^{y}=\frac{4}{5}$, following a positive answer from part (i)

Apply logarithms and use $\log a^{b}=b \log a$ property
Obtain -0.161 and no other answer

5 (i) Use correct quotient rule or equivalent
Obtain $\frac{\left(1+\mathrm{e}^{2 x}\right) 2 x-\left(1+x^{2}\right) 2 \mathrm{e}^{2 x}}{\left(1+\mathrm{e}^{2 x}\right)^{2}}$ or equivalent
Substitute $x=0$ and obtain $-\frac{1}{2}$ or equivalent
(ii) Differentiate y^{3} and obtain $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$

Differentiate $5 x y$ and obtain $5 y+5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Obtain $6 x^{2}+5 y+5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	31

Substitute $x=0, y=2$ to obtain $-\frac{5}{6}$ or equivalent following correct work
6 (i) State or imply A is $(1,4,-2)$
State or imply $\overrightarrow{Q P}=12 \mathbf{i}+6 \mathbf{j}-6 \mathbf{k}$ or equivalent B1
Use $Q P$ as normal and A as mid-point to find equation of plane M1
Obtain $12 x+6 y-6 z=48$ or equivalent
(ii) Either State equation of $P B$ is $\mathbf{r}=7 \mathbf{i}+7 \mathbf{j}-5 \mathbf{k}+\lambda \mathbf{i}$

Set up and solve a relevant equation for λ. M1
Obtain $\lambda=-9$ and hence B is $(-2,7,-5)$
Use correct method to find distance between A and B. M1
Obtain 5.20

Or \quad Obtain 12 for result of scalar product of $Q P$ and \mathbf{i} or equivalent B1 Use correct method involving moduli, scalar product and cosine A1 B1 A1 A1
to find angle $A P B$

Obtain 35.26° or equivalent A1
Use relevant trigonometry to find $A B$ M1
Obtain 5.20

7 (a) State or imply $3 a+3 b \mathrm{i}+2 \mathrm{i}(a-b \mathrm{i})=17+8 \mathrm{i}$
Consider real and imaginary parts to obtain two linear equations in a and b
Solve two simultaneous linear equations for a or b
Obtain 7-2i
(b) Either Show or imply a triangle with side 2
$\begin{array}{ll}\text { State at least two of the angles } \frac{1}{4} \pi, \frac{2}{3} \pi \text { and } \frac{1}{12} \pi & \mathrm{~B} 1\end{array}$
$\begin{array}{ll}\text { State or imply argument is } \frac{1}{4} \pi & \text { B1 }\end{array}$
Use sine rule or equivalent to find $r \quad$ M1
Obtain $6.69 \mathrm{e}^{\frac{1}{4} \pi \mathrm{i}} \quad$ A1
Or \quad State $y=x$.
State $y=\frac{1}{\sqrt{3}} x+2$ or $\frac{\sqrt{3}}{2}=\frac{x}{\sqrt{x^{2}+(y-2)^{2}}}$ or $\frac{1}{2}=\frac{y-2}{\sqrt{x^{2}+(y-2)^{2}}}$
State or imply argument is $\frac{\pi}{4}$
Solve for x or y. M1
Obtain $6.69 e^{\frac{1}{4} \pi i}$ A1

8 (a) Carry out integration by parts and reach $a x^{2} \ln x+b \int \frac{1}{2} x^{2} \mathrm{~d} x$

Use limits, having integrated twice A1
Obtain $2 x^{2} \ln x-\int \frac{1}{x} \cdot 2 x^{2} \mathrm{~d} x$
Obtain $2 x^{2} \ln x-x^{2}$

Confirm given result $56 \ln 2-12$ 1

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	31

(b) State or imply $\frac{\mathrm{d} u}{\mathrm{~d} x}=4 \cos 4 x$ B1
Carry out complete substitution except limits M1
Obtain $\int\left(\frac{1}{4}-\frac{1}{4} u^{2}\right) \mathrm{d} u$ or equivalent A1
Integrate to obtain form $k_{1} u+k_{2} u^{3}$ with non-zero constants k_{1}, k_{2} M1
Use appropriate limits to obtain $\frac{11}{96}$ A1
9 (i) State or imply $R=5$ B1
Use relevant trigonometry to find α M1
Obtain $\alpha=0.6435$ A1
(ii) (a) Carry out appropriate method to find one value in given range M1
Obtain 1.80 A1
Carry out appropriate method to find second value in given range M1
Obtain 5.77 and no other value A1
(b) Express integrand as $k \sec ^{2}(\theta-$ their $\alpha)$ for any constant k M1
Integrate to obtain result $k \tan (\theta-$ their $\alpha)$ A1
Obtain correct answer $2 \tan (\theta-0.6435)$ A1
10 (i) State $\frac{\mathrm{d} V}{\mathrm{~d} t}=80-k V$ B1
Correctly separate variables and attempt integration of one side M1
Obtain $a \ln (80-k V)=t$ or equivalent M1*
Obtain $-\frac{1}{k} \ln (80-k V)=t$ or equivalent A1
Use $t=0$ and $V=0$ to find constant of integration or as limits M1 (dep*)
Obtain $-\frac{1}{k} \ln (80-k V)=t-\frac{1}{k} \ln 80$ or equivalent A1
Obtain given answer $V=\frac{1}{k}\left(80-80 \mathrm{e}^{-k t}\right)$ correctly A1
(ii) Use iterative formula correctly at least once M1
Obtain final answer 0.14 A1Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a signchange in the interval $(0.135,0.145)$
(iii) State a value between 530 and $540 \mathrm{~cm}^{3}$ inclusiveState or imply that volume approaches $569 \mathrm{~cm}^{3}$ (allowing any value between567 and 571 inclusive)

