	9709_s13_m						
	Page	e 4	Mark Scheme	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2013	9709	31		
	~						
1	Carry	Carry out division or equivalent at least as far as two terms of quotient					
	Obtain quotient $2x - 4$			A1 A1	[3]		
	Obtain	i i cinan				[3]	
2	Obtair	n 1- <i>x</i> a	as first two terms of $(1+2x)^{-\frac{1}{2}}$		B1		
	Obtair	$1 + \frac{3}{2}x^2$	or unsimplified equivalent as third term of $(1+2x)^{-\frac{1}{2}}$		B1		
	Multip	oly 1+3	x by attempt at $(1+2x)^{-\frac{1}{2}}$, obtaining sufficient terms		M1		
	Obtair	n final a	nswer $1 + 2x - \frac{3}{2}x^2$		A1	[4]	
2	State	- <i>u</i> : 1-	A = Bx + C		D1		
3	State	or impiy	$\frac{1}{x} + \frac{1}{x^2 + 1}$		DI		
	Use an	Use any relevant method to find at least one constant					
	Obtair	A = 2			Al Al		
	Obtair	1 D = 5 1 C = -3	3		A1	[5]	
						[-]	
4	(i) <u>E</u>	lither	State or imply non-modular equation $(4x-1)^2 = (x-3)^2$ or pair	ir of			
			linear equations $4x - 1 = \pm(x - 3)$		B1		
			Solve a three-term quadratic equation or two linear equations		M1		
			Obtain $-\frac{2}{3}$ and $\frac{4}{5}$		A1		
	<u>C</u>	<u>)r</u>	Obtain value $-\frac{2}{3}$ from inspection or solving linear equation		B1		
			Obtain value $\frac{4}{5}$ similarly		B2	[3]	
	(!!) 0	4 - 4			D1		
	(II) 5	(ii) State or imply at least $4^{7} = \frac{1}{5}$, following a positive answer from part (1)		.)	BIV		
	A	Apply lo	garithms and use $\log a^{o} = b \log a$ property		Ml	[2]	
	Ĺ	obtain -	-0.161 and no other answer		Al	[3]	
5	(i) U	(i) Use correct quotient rule or equivalent					
	C	Obtain <u>(</u>	$\frac{1 + e^{2x})2x - (1 + x^2)2e^{2x}}{(1 + e^{2x})^2} \text{or equivalent}$		A1		
	S	ubstitut	e $x = 0$ and obtain $-\frac{1}{2}$ or equivalent		A1	[3]	
	(ii) D	Differen	tiate y^3 and obtain $3y^2 \frac{dy}{dx}$		B1		
	Ľ	Differen	tiate 5xy and obtain $5y + 5x \frac{dy}{dx}$		B1		
	C)btain 6	$5x^{2} + 5y + 5x\frac{dy}{dx} + 3y^{2}\frac{dy}{dx} = 0$		B1		

	Pa	ae 5	Mark Scheme	970 Svilabus)9_s13_ms_31 Paper	
	10	ige o	GCE AS/A LEVEL – May/June 2013	9709	31	
L			· · ·			
		Substitut	e $x = 0, y = 2$ to obtain $-\frac{5}{6}$ or equivalent following correct we	ork	B1	[4]
6	(i)	State or i	mply A is $(1, 4, -2)$		B1	
		State or i	mply $QP = 12\mathbf{i} + 6\mathbf{j} - 6\mathbf{k}$ or equivalent		B1	
		Use <i>QP</i> a Obtain 1	as normal and A as mid-point to find equation of plane 2x+6y-6z=48 or equivalent		MI A1	[4]
	(ii)	Either	State equation of <i>PB</i> is $\mathbf{r} = 7\mathbf{i} + 7\mathbf{j} - 5\mathbf{k} + \lambda \mathbf{i}$		B1	
			Set up and solve a relevant equation for λ .		M1	
			Obtain $\lambda = -9$ and hence <i>B</i> is $(-2, 7, -5)$		Al	
			Obtain 5.20		MI A1	
		<u>Or</u>	Obtain 12 for result of scalar product of <i>QP</i> and i or equivalent Use correct method involving moduli, scalar product and cosin	nt ne	B1	
			to find angle <i>APB</i>		M1	
			Use relevant trigonometry to find AB		AI M1	
			Obtain 5.20		A1	[5]
_						
1	(a)	State or 1	mply $3a + 3b1 + 21(a - b1) = 17 + 81$	17		
		Consider Solve tw	real and imaginary parts to obtain two linear equations in a and simultaneous linear equations for a or b	d <i>b</i>	M1* M1 (den*)	
		Obtain 7	– 2i		A1	[4]
	(b)	Either	Show or imply a triangle with side 2		B1	
	(~)		State at least two of the angles $\frac{1}{4}\pi$, $\frac{2}{3}\pi$ and $\frac{1}{13}\pi$		B1	
			State or imply argument is $\frac{1}{2}\pi$		B1	
			Use sine rule or equivalent to find r		M1	
			Obtain $6.69e^{\frac{1}{4}\pi i}$		A1	
		<u>Or</u>	State $y = x$.		B1	
			State $y = \frac{1}{\sqrt{3}}x + 2$ or $\frac{\sqrt{3}}{2} = \frac{x}{\sqrt{x^2 + (y-2)^2}}$ or $\frac{1}{2} = \frac{y-2}{\sqrt{x^2 + (y-2)^2}}$	$\overline{)^2}$	B1	
			State or imply argument is $\frac{\pi}{4}$		B1	
			Solve for <i>x</i> or <i>y</i> .		M1	
			Obtain $6.69e^{\frac{1}{4}\pi i}$		A1	[5]
0	(9)	(a) Carry out integration by parts and reach $ar^2 \ln r + b \int_{-1}^{1} r^2 dr$			M1*	
0	(a)		$\int \frac{1}{2} x dx$		1711	
		Obtain 2	$x^{2} \ln x - \int \frac{1}{x} \cdot 2x^{2} dx$		Al	
		Obtain 2	$x^2 \ln x - x^2$		A1	
		Confirm	given result 56 ln 2 – 12		A1	[5]

				9709 s13		<u>ms 31</u>	
Page 6		ge 6	Mark Scheme	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2013	9709	31		
	(h)	State or imply $\frac{du}{dt} = 4\cos 4r$			B1		
	()	Carry out	$\frac{1}{2}$ complete substitution except limits		M1		
		Obtain $\int (\frac{1}{2} - \frac{1}{2}u^2) du$ or equivalent			Al		
		J Integrate	to obtain form $ku + ku^3$ with non-zero constants k. k.		M1		
		Use appr	popriate limits to obtain $\frac{11}{2}$		A 1	[5]	
		coc uppr			711	[2]	
9	(i)	State or imply $R = 5$			B1		
		Use relev	ant trigonometry to find α		M1		
		Obtain α	= 0.6435		Al	[3]	
	(ii)	(a) Carr	y out appropriate method to find one value in given range		M1		
		Obta	in 1.80		A1		
		Carr	y out appropriate method to find second value in given range		M1		
		Obta	in 5.77 and no other value		Al	[4]	
		(b) Exp	tress integrand as $k \sec^2(\theta - \text{their } \alpha)$ for any constant k		M1		
		Integ	grate to obtain result $k \tan(\theta - \text{their } \alpha)$		A1		
		Obta	in correct answer $2\tan(\theta - 0.6435)$		A1	[3]	
10	(i)	State $\frac{dV}{V}$ =	= 80 - <i>kV</i>		B1		
		Correctly	separate variables and attempt integration of one side		M1		
		Obtain a	$\ln(80 - kV) = t$ or equivalent		M1*		
		Obtain $-\frac{1}{k}\ln(80-kV) = t$ or equivalent			A1		
		Use $t = 0$ and $V = 0$ to find constant of integration or as limits			M1 (dep*)		
		Obtain $-\frac{1}{k}\ln(80-kV) = t - \frac{1}{k}\ln 80$ or equivalent			A1		
		Obtain gi	ven answer $V = \frac{1}{k}(80 - 80e^{-kt})$ correctly		A1	[7]	
	(ii)	Use iterat	tive formula correctly at least once		M1		
		Obtain fi	nal answer 0.14		A1		
		Show suf	ticient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign the interval $(0.135, 0.145)$	gn	Δ1	[2]	
		change II	i ine interval (0.155, 0.145)		AI	[2]	
	(iii)	State a va	lue between 530 and 540 cm ³ inclusive		B1		
	. /	State or in	mply that volume approaches 569 cm ³ (allowing any value betw	ween			
		567 and 5	571 inclusive)		B1	[2]	