Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - May/June 2013	9709	23

1 Either State or imply non-modular equation $\left(2^{x}-7\right)^{2}=1^{2}$, or corresponding pair of equations M1
Obtain $2^{x}=8$ and $2^{x}=6$ A1
State answer 3 B1
Use logarithmic method to solve an equation of the form $2^{x}=k$, where $k>0$ M1
State answer 2.58 A1
Or State or imply one value for 2^{x}, e.g. 8 , by solving an equation or by inspection B1
State answer 3 B1
State second value for 2^{x} B1
Use logarithmic method to solve an equation of the form $2^{x}=k$, where $k>0$ M1
State answer 2.58 A1
2 Use $2 \ln x=\ln \left(x^{2}\right)$ M1
Use law for addition or subtraction of logarithms M1
Obtain correct quadratic equation in x A1
Make reasonable solution attempt at a 3-term quadratic DM1
(dependent on previous M marks)
State $x=\frac{3}{5}$ and no other solutionsA1

3 (i) Either

Use $\sin 2 x=2 \sin x \cos x$ to convert integrand to $k \sin ^{2} 2 x \quad$ M1
Use $\cos 4 x=1-2 \sin ^{2} 2 x$
State correct expression $\frac{1}{2}-\frac{1}{2} \cos 4 x$ or equivalent
Or
Use $\cos ^{2} x=\frac{1-\cos 2 x}{2}$ and/or $x=\frac{1-\cos 2 x}{2}$ to obtain an equation in $\cos 2 x$ only
Use $\cos ^{2} 2 x=\frac{1+\cos 4 x}{2}$
State correct expression $\frac{1}{2}-\frac{1}{2} \cos 4 x$ or equivalent
(ii) State correct integral $\frac{3}{2} x-\frac{3}{8} \sin 4 x$, or equivalent

Attempt to substitute limits, using exact values
Obtain given answer correctly

4 (i) Substitute $x=-\frac{3}{2}$, equate to zero
Substitute $x=-1$ and equate to 8
Obtain a correct equation in any form A1
Solve a relevant pair of equations for a or for b M1
Obtain $a=2$ and $b=-6$

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS LEVEL - May/June 2013	9709	23

(ii) Attempt either division by $2 x+3$ and reach a partial quotient of $x^{2}+k x$, use of an identity or observation
Obtain quotient $x^{2}-4 x+3$
Obtain linear factors $x-1$ and $x-3$
[Condone omission of repetition that $2 x+3$ is a factor.] A1
[If linear factors $x-1, x-3$ obtained by remainder theorem or inspection, award B2 +B 1 .]

5 (i) Use product rule to differentiate y
Obtain correct derivative in any form
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
M1
Obtain given answer correctly
(ii) Substitute $t=0$ in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and both parametric equations

Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ and coordinates $(1,0)$
Form equation of the normal at their point, using negative reciprocal of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
State correct equation of normal $y=-\frac{1}{2} x+\frac{1}{2}$ or equivalent

6 (i) Make a recognisable sketch of a relevant graph, e.g. $y=\cot x$ or $y=4 x-2$
Sketch a second relevant graph and justify the given statement
(ii) Consider sign of $4 x-2-\cot x$ at $x=0.7$ and $x=0.9$, or equivalent

Complete the argument correctly with appropriate calculations
(iii) Show that given equation is equivalent to $x=\frac{1+2 \tan x}{4 \tan x}$, or vice versa
(iv) Use the iterative formula correctly at least once

Obtain final answer 0.76

Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval $(0.755,0.765)$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{2 3}$

7 (i) State $R=\sqrt{29} \quad$ B1
Use trig formula to find $\alpha \quad$ M1

Obtain $\alpha=21.80^{\circ}$ with no errors seen A1
[3]
(ii) Carry out evaluation of $\sin ^{-1}\left(\frac{4}{R}\right)\left(\approx 47.97^{\circ}\right) \quad$ M1

Carry out correct method for one correct answer M1
Obtain one correct answer e.g. 13.1° A1
Carry out correct method for a further answer M1
Obtain remaining 3 answers $55.1^{0}, 193.1^{0}, 235.1^{0}$ and no others in the range A1
(iii) Greatest value of $10 \sin 2 \theta+4 \cos 2 \theta=2 \sqrt{ } 29 \quad$ M1
$\frac{1}{116}$ A1

