				970	9709 s13 ms 23			
Page 4		ge 4	4 Mark Scheme Sylla		Paper	r		
			GCE AS LEVEL – May/June 2013	9709	23			
1	<u>Eith</u>	<u>er</u> State Obta State Use State	e or imply non-modular equation $(2^x - 7)^2 = 1^2$, or correspondent in $2^x = 8$ and $2^x = 6$ e answer 3 logarithmic method to solve an equation of the form $2^x = k$, we answer 2.58	ing pair of equat where $k > 0$	ions M1 A1 B1 M1 A1			
	<u>Or</u>	State State State Use State	e or imply one value for 2^x , e.g. 8, by solving an equation or by e answer 3 e second value for 2^x logarithmic method to solve an equation of the form $2^x = k$, we e answer 2.58	y inspection where $k > 0$	B1 B1 M1 A1	[5]		
2	Use Use Obta Mak (dep State	$2 \ln x = \ln 2 \ln x$ law for action and correctly for a constant of the second pendent on the second s	$n(x^2)$ Idition or subtraction of logarithms a quadratic equation in x ble solution attempt at a 3-term quadratic previous M marks) and no other solutions		M1 M1 A1 DM1 A1	[5]		
3	(i)	$\frac{\text{Either}}{\text{Use sin 2}}$ $\frac{\text{Use cos}^2}{\text{State corr}}$ $\frac{\text{Or}}{\text{Use cos}^2}$ $\frac{\text{Use cos}^2}{\text{Use cos}^2}$	$x = 2\sin x \cos x \text{ to convert integrand to } k \sin^2 2x$ $x = 1 - 2\sin^2 2x$ rect expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent $x = \frac{1 - \cos 2x}{2} \text{ and/or } x = \frac{1 - \cos 2x}{2} \text{ to obtain an equation in}$ $2x = \frac{1 + \cos 4x}{2}$	$\cos 2x$ only	M1 M1 A1 M1			
	(ii)	State com State com Attempt t Obtain gi	rect expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent rect integral $\frac{3}{2}x - \frac{3}{8}\sin 4x$, or equivalent to substitute limits, using exact values ven answer correctly		A1 B1 M1 A1	[3]		
4	(i)	Substitute Substitute Obtain a Solve a re Obtain <i>a</i>	e $x = -\frac{3}{2}$, equate to zero e $x = -1$ and equate to 8 correct equation in any form elevant pair of equations for <i>a</i> or for <i>b</i> = 2 and $b = -6$		M1 A1 M1 A1	[5]		

Page 5		Mark Scheme	Syllabus	Paper	
	-	GCE AS LEVEL – May/June 2013	9709	23	
(ii)	Attempt either division by $2x + 3$ and reach a partial quotient of $x^2 + kx$, use of an identit observation				
	Obtain qu Obtain lin	notient $x^2 - 4x + 3$ near factors $x - 1$ and $x - 3$		A1	
	[Condone [If linear :	e omission of repetition that $2x + 3$ is a factor.] factors $x - 1$, $x - 3$ obtained by remainder theorem or inspecti	on, award B2 +]	A1 B1.]	[3]
(i)	Use produ Obtain co	act rule to differentiate y rrect derivative in any form		M1 A1	
	Use $\frac{dy}{dx} =$	$\frac{dy}{dt} \div \frac{dx}{dt}$		M1	
	Obtain gi	ven answer correctly		A1	[4]
(ii)	Substitute	$t = 0$ in $\frac{dy}{dx}$ and both parametric equations		B1	
	Obtain $\frac{dy}{dy}$	$\frac{v}{x} = 2$ and coordinates (1, 0)		B 1	
	Form equ	ation of the normal at their point, using negative reciprocal of	their $\frac{dy}{dx}$	M1	
	State corr	ect equation of normal $y = -\frac{1}{2}x + \frac{1}{2}$ or equivalent		A1	[4]
(i)	Make a re Sketch a s	ecognisable sketch of a relevant graph, e.g. $y = \cot x$ or $y = 4x$ second relevant graph and justify the given statement	z – 2	B1 B1	[2]
(ii)	Consider Complete	sign of $4x - 2 - \cot x$ at $x = 0.7$ and $x = 0.9$, or equivalent the argument correctly with appropriate calculations		M1 A1	[2]
(iii)	Show that	t given equation is equivalent to $x = \frac{1 + 2 \tan x}{4 \tan x}$, or vice versa		B1	[1]
(iv)	Use the it Obtain fir	erative formula correctly at least once nal answer 0.76		M1 A1	
	Show suffin the inte	ficient iterations to justify its accuracy to 2 d.p. or show there erval (0.755, 0.765)	is a sign change	B1	[3]

	Page 6		Mark Scheme Sv		Paper	r]
		0	GCE AS LEVEL – May/June 2013	9709	23	
7	(i)	State $R =$	$=\sqrt{29}$		B1	
		Use trig f	formula to find α		M1	
		Obtain α	$=21.80^{\circ}$ with no errors seen		A1	[3]
	(ii)	Carry out	evaluation of $\sin^{-1}\left(\frac{4}{R}\right) (\approx 47.97^{\circ})$		M1	
		Carry out	correct method for one correct answer		M1	
		Obtain or	ne correct answer e.g. 13.1°		A1	
		Carry out	correct method for a further answer		M1	
		Obtain re	maining 3 answers 55.1° , 193.1° , 235.1° and no others in the	range	A1	[5]
	(iii)) Greatest	value of $10 \sin 2\theta + 4 \cos 2\theta = 2\sqrt{29}$		M1	
		$\frac{1}{116}$			A1	[2]