9709 s13 ms 13

Page 4		je 4	Mark Scheme	Syllabus	Paper			
			GCE AS/A LEVEL – May/June 2013			9709	13	
1		du						
1		$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{1}{2}}$	$\sqrt{2x+5}$					
		ux						
		(2x+5)	$)^{\frac{3}{2}}$ 2 (+)	B1		B1 Everything without "÷2".		
		$\frac{3}{2}$	$ \div$ 2 (+c)	DI		B1 "÷2"		
					E 43	.	. 1	
		Uses (2,	$(5) \rightarrow c = -4$	MIAI	[4]	Uses point in an in	ntegral.	
2	(i)	$\frac{1}{2}.3^{2}\pi =$	$\frac{1}{2}9^2\theta - \frac{1}{2}3^2\theta$	M1 A1		M1 needs $\frac{1}{2}r^{2\theta}$ once. A1 all		
		$\rightarrow \theta =$	$rac{1}{4} \mathcal{T}$	A1	[3]	correct. Answer given		
		D		MI				
	(11)	P = 6 + 6	$+3 \times \frac{1}{4}\pi + 9 \times \frac{1}{4}\pi = 21.4$ cm.		[2]	M1 is for use of $s=r\theta$ once.		
		or $12 + .$	5π	AI				
3		$2\cos^2\theta =$	$= \tan^2 \theta$					
	(i)		$\sin^2 \theta$			Use of $t^2 = s^2 \div c^2$	or alternative.	
		$\rightarrow 2\cos$	$e^{2}\theta = \frac{1}{\cos^{2}\theta}$	MI		Correct eqn.		
		\rightarrow Uses	$c^{2+}s^{2}=1 \rightarrow 2c^{4}=1-c^{2}$	A1	[2]			
	(ii)	(2.2)		M1		Method of solving	g for 3-term	
		$(2c^2 -$	$(c^2 + 1) = 0 \rightarrow c = \pm \frac{1}{\sqrt{2}}$			quadratic.		
		$\rightarrow \theta$	$= \frac{1}{4\pi}$ or $\frac{3}{4\pi}$.	A1 A1 $$		(in terms of π). $\sqrt{2}$	for $\pi - 1^{st}$ ans.	
					[2]	Cannot gain A1 $$	if other	
					[3]		ine range.	
4	(i)	(2+ax)	$)^{5} = 32 + 80ax + 80a^{2}x^{2}$	$3 \times B1$	[3]	B1 for each term.		
	(ii)	$\times (1+2)$	r)	M1		Realises need to c	onsider 2	
	(11)	240 = 80	$a^{2})a^{2} + 160a$	DM1A1		terms.		
		$\rightarrow a = 1$	or $a = -3$.		[3]	Solution of 3-term	n quadratic.	
5	(i)			B1		y = sin2x has 2 cyc	cles, starts and	
						finishes on the <i>x</i> -a	ixis, max	
				DB1		From $+1$ to -1 . Sr	nooth curves.	
		+1	γ \wedge	B1		$y = \cos x - 1$ has c	one cycle,	
		04				with a minimum p	off <i>x</i> -axis,	
			\backslash $/\pi$ $/2\pi$	DB1		From 0 to -2, smo	both curve,	
		-1	\backslash $/$			nauens.		
		-2			ГАЛ			
					[4]			
	(ii)	(a) sin2	$2x = -\frac{1}{2} \rightarrow 4$ solutions	B1√	[1]	$\sqrt{1}$ for their curve.		
		(b) sin2	$2x + \cos x + 1 = 0 \rightarrow 3$ solutions.	B1√		$\sqrt{1}$ for intersections	of their	
					[1]	curves.		

	9709_s13_ms						
Pag	je 5	Mark Sche	Syllabus Paper				
	GCE AS/A LEVEL – May/June 2013			9709	13		
	1						
6	$u = x^{2}y y + 3x = 9$ $u = x^{2}(9 - 3x) \text{ or } \left(\frac{9 - y}{3}\right)^{2}y$		M1		Expressing <i>u</i> in tervariable	rms of 1	
	$\frac{du}{dx} = 18x - 9x^2$ or $\frac{du}{dy} = 27 - 12y + y^2$		DM1A1		Knowing to differentiate.		
	=0 whe	DM1 A1		Setting differential to 0.			
	$\frac{\mathrm{d}^2 u}{\mathrm{d} \mathrm{x}^2} = 1$	8–18 <i>x</i> –ve	DM1 A1	[7]	Any valid method		
7	A (2, 14), <i>B</i> (14, 6) and <i>C</i> (7, 2).					
(i)	<i>m</i> of <i>AB</i>	$=-\frac{2}{3}$	B1				
	<i>m</i> of per	pendicular = $\frac{3}{2}$	M1		For use of $m_1 m_2 =$	-1	
	eqn of A	eqn of $AB y - 14 = -\frac{2}{3}(x - 2)$			Allow M1 for unsimplified eqn		
	eqn of C	$2X \ y - 2 = \frac{3}{2}(x - 7)$	M1		Allow M1 for unsi	mplified eqn	
	Sim Eqns $\rightarrow X(11, 8)$		M1 A1	[6]	For solution of sim eqns.		
(ii)	AX: XB Or $\sqrt{9^2}$	= 14-8: 8-6 = 3: 1 +6 ²): $\sqrt{(3^2+2^2)} = 3: 1$	M1 A1	[2]	Vector steps or Pythagoras.		
8	$\overrightarrow{OA} = \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	$ \begin{array}{c} 3\\3\\-4 \end{array} \right) \text{ and } \overrightarrow{OB} = \begin{pmatrix} 5\\0\\2 \end{pmatrix}. $					
	(i) OC :	$= \mathbf{A}\mathbf{B} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$	M1		Knowing how to f	ind OC	
	Uses OC	C and OB	B1		Using OC.OB or	CO.BO	
	OC.OB	$= 22 = 7 \times \sqrt{29} \cos BOC$	M1 M1		M1 Use of $x_1x_2 + .$ modulus	M1 for	
	→ Angl	$e BOC = 54.3^{\circ} (or 0.948 rad)$	M1 A1	[6]	M1 everything lind (nb uses BO.OC le (nb uses other vector M1M1)	ked. oses B1 A1) tors – max	

9709_s13_n							
Pag	ge 6 Mark Scheme				Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013			9709	13	
(ii)	Modulus of $\mathbf{OC} = 7$ Vector = $35 \div 7 \times \mathbf{OC}$		M1		Knows to scale by Mod	factor of 35 ÷	
	$\rightarrow \pm 5 \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$		A1√	[2]	For their OC .		
9 (a)	$S_n = 2r$	$n^2 + 8n$					
	$S_1 = 10 = a$		B1				
	$S_2 = 24 = a + (a + d) d = 4$		M1 A1	[3]	correct use of S_n formula.		
(b)	GP $a = 6$	$54 ar = 48 \longrightarrow r = \frac{3}{4}$	B1				
	\rightarrow 3rd te	rm is $ar^2 = 36$	M1		ar^2 numerical – for	their r	
	AP $a = 6$	54, $a + 8d = 48 \rightarrow d = -2$	B1				
	36 = 64	+(n-1)(-2)	M1		correct use of $a+(n)$	<i>i−1)d</i>	
	$\rightarrow n = 1$	5.	A1	[5]			
10	$f: x \mapsto z$	$2x+k, g: x \mapsto x^2 - 6x + 8,$					
(i)	2(2x+3) $\rightarrow x = 4$ or {f(11)	() + 3 = 25 () = 25, f(4) = 11	M1 A1	[2]	ff(<i>x</i>) needs to be co formed	prrectly	
(ii)	$x^{2} - 6x$ $x^{2} - 8x$ Uses $b^{2} - b^{2} - b^{2}$	4 + 8 = 2x + k + 8 - k = 0 - 4ac < 0 8	M1 M1 A1	[3]	Eliminates y to for Uses the discrimin =0.>0	m eqn in <i>x</i> . ant – even if	
(iii)	$x^{2} - 6x$ y = (x - Makes x) Needs sp	$4 + 8 = (x - 3)^2 - 1$ $3)^2 - 1$ the subject $\rightarrow \pm \sqrt{(x + 1)} + 3$ pecifically to lose the "-".	B1 B1 M1 A1√	[4]	For "-3" and "-1" Makes x the subject x and without $-$ or	et, in terms of ±.	

9709 s13 ms 1									
Page 7		Mark Scheme	Syllabus	Paper					
		GCE AS/A LEVEL – May/	9709	13					
11	$y = \frac{8}{\sqrt{x}}$	= -x							
(i)	$\frac{dy}{dx} = -\frac{3}{2}$ $= -\frac{3}{2}$ Eqn of h $\rightarrow C(1, \infty)$	$4x^{-\frac{3}{2}} - 1$ when $x = 4$. BC $y - 0 = -\frac{3}{2}(x - 4)$ $4^{\frac{1}{2}}$	B1 M1 M1 A1	[4]	needs both Subs $x = 4$ into dy/dx Must be using differential + correct form of line at $B(4,0)$.				
(ii)	area unc	der curve = $\int (\frac{8}{\sqrt{x}} - x)$		Γ.]					
	$=\frac{8x^{\overline{2}}}{\frac{1}{2}}$	$-\frac{1}{2}x^{2}$	B1 B1		(both unsimplified	1)			
	Limits 1	to $4 \rightarrow 8\frac{1}{2}$	M1		Using correct limi	ts.			
	Area un	der tangent = $\frac{1}{2} \times \frac{41}{2} \times 3 = \frac{63}{4}$	M1		Or could use calcu	ılus)			
	Shaded	area = $1\frac{3}{4}$	A1	[5]					