Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	13

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \frac{\mathrm{d} y}{\mathrm{dx}}=\sqrt{2 x+5} \\
\& \frac{(2 x+5)^{\frac{3}{2}}}{\frac{3}{2}} \div 2 \quad(+c)
\end{aligned}
\] \\
Uses \((2,5) \quad \rightarrow \quad c=-4\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 A1
\end{tabular} \& [4] \& \begin{tabular}{l}
B1 Everything without " \(\div 2\) ". \\
B1 " \(\div 2\) " \\
Uses point in an integral.
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2 \quad \text { (i) }
\] \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2.3^{2} \pi=1 / 29^{2} \theta-1 / 23^{2} \theta \\
\& \rightarrow \theta=\frac{1}{4} \pi
\end{aligned}
\]
\[
P=6+6+3 \times \frac{1}{4} \pi+9 \times 1 / 4 \pi=21.4 \mathrm{~cm} .
\]
\[
\text { or } 12+3 \pi
\] \& \begin{tabular}{l}
M1 A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& [3]
[2] \& \begin{tabular}{l}
M1 needs \(1 / 2 r^{2} \theta\) once. A1 all correct. \\
Answer given \\
M1 is for use of \(s=r \theta\) once.
\end{tabular} \\
\hline \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& 2 \cos ^{2} \theta=\tan ^{2} \theta \\
\& \rightarrow 2 \cos ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
\& \rightarrow \text { Uses } c^{2}+s^{2}=1 \rightarrow 2 c^{4}=1-c^{2} \\
\& \quad\left(2 c^{2}-1\right)\left(c^{2}+1\right)=0 \rightarrow c= \pm \frac{1}{\sqrt{2}} \\
\& \rightarrow \theta=1 / 4 \pi \text { or } 3 / 4 \pi .
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 A1V
\end{tabular} \& [2]

[3] \& | Use of $t^{2}=s^{2} \div c^{2}$ or alternative. Correct eqn. |
| :--- |
| Method of solving for 3-term quadratic. |
| (in terms of π). $\sqrt{ }$ for $\pi-1^{\text {st }}$ ans. Cannot gain A1 $\sqrt{ }$ if other answers given in the range. | \\

\hline | $4 \quad$ (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& (2+a x)^{5}=32+80 a x+80 a^{2} x^{2} \\
& \times(1+2 x) \\
& 240=80 a^{2}+160 a \\
& \rightarrow a=1 \text { or } a=-3 .
\end{aligned}
$$

\] \& | $3 \times \mathrm{B} 1$ |
| :--- |
| M1 DM1A1 | \& [3]

[3] \& | B1 for each term. |
| :--- |
| Realises need to consider 2 terms. |
| Solution of 3-term quadratic. | \\

\hline | $5 \quad$ (i) |
| :--- |
| (ii) | \& | |
| :--- |
| (a) $\sin 2 x=-1 / 2 \rightarrow 4$ solutions |
| (b) $\sin 2 x+\cos x+1=0 \rightarrow 3$ solutions. | \& | B1 |
| :--- |
| DB1 |
| B1 |
| DB1 |
| B1 $\sqrt{ }$ |
| B1 $\sqrt{ }$ | \& [4]

[1]

$[1]$ \& | $y=\sin 2 x$ has 2 cycles, starts and |
| :--- |
| finishes on the x-axis, max comes first. |
| From +1 to -1 . Smooth curves. $y=\cos x-1$ has one cycle, starts and finishes on x-axis, with a minimum pt. |
| From 0 to -2 , smooth curve, flattens. |
| \checkmark for their curve. |
| \checkmark for intersections of their curves. | \\

\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	13

6	$\begin{aligned} & u=x^{2} y \quad y+3 x=9 \\ & u=x^{2}(9-3 x) \text { or }\left(\frac{9-y}{3}\right)^{2} y \\ & \frac{\mathrm{~d} u}{\mathrm{dx}}=18 x-9 x^{2} \text { or } \frac{\mathrm{d} u}{\mathrm{dy}}=27-12 y+y^{2} \\ & =0 \text { when } x=2 \text { or } y=3 \rightarrow u=12 \\ & \frac{\mathrm{~d}^{2} u}{\mathrm{dx}^{2}}=18-18 x \quad-\mathrm{ve} \end{aligned}$	DM1A1 DM1 A1 DM1 A1	[7]	Expressing u in terms of 1 variable Knowing to differentiate. Setting differential to 0 . Any valid method
7 (i) (ii)	$\begin{aligned} & A(2,14), B(14,6) \text { and } C(7,2) . \\ & m \text { of } A B=-2 / 3 \\ & m \text { of perpendicular }=\frac{3}{2} \\ & \text { eqn of } A B \quad y-14=-\frac{2}{3}(x-2) \\ & \text { eqn of } C X \quad y-2=\frac{3}{2}(x-7) \end{aligned}$ Sim Eqns $\rightarrow X(11,8)$ $A X: X B=14-8: 8-6=3: 1$ Or $\sqrt{ }\left(9^{2}+6^{2}\right): \sqrt{ }\left(3^{2}+2^{2}\right)=3: 1$	B1 M1 M1 M1 M1 A1 M1 A1	[6] [2]	For use of $m_{1} m_{2}=-1$ Allow M1 for unsimplified eqn Allow M1 for unsimplified eqn For solution of sim eqns. Vector steps or Pythagoras.
8	$\overrightarrow{O A}=\left(\begin{array}{c} 3 \\ 3 \\ -4 \end{array}\right) \text { and } \overrightarrow{O B}=\left(\begin{array}{l} 5 \\ 0 \\ 2 \end{array}\right)$ (i) $\mathbf{O C}=\mathbf{A B}=\mathbf{b}-\mathbf{a}=\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$ Uses $\mathbf{O C}$ and $\mathbf{O B}$ $\mathbf{O C . O B}=22=7 \times \sqrt{ } 29 \cos B O C$ \rightarrow Angle $B O C=54.3^{\circ}($ or 0.948 rad$)$	M1 B1 M1 M1 M1 A1	[6]	Knowing how to find OC Using OC.OB or CO.BO M1 Use of $x_{1} x_{2}+\ldots \quad$ M1 for modulus M1 everything linked. (nb uses BO.OC loses B1 A1) (nb uses other vectors - max M1M1)

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	13

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \[
\begin{aligned}
\& \text { Modulus of } \mathbf{O C}=7 \\
\& \text { Vector }=35 \div 7 \quad \times \mathbf{O C} \\
\& \rightarrow \pm \mathbf{5}\left(\begin{array}{c}
2 \\
-3 \\
6
\end{array}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1V
\end{tabular} \& [2] \& \begin{tabular}{l}
Knows to scale by factor of 35 : Mod \\
For their OC.
\end{tabular} \\
\hline \begin{tabular}{l}
\(9 \quad\) (a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& S_{n}=2 n^{2}+8 n \\
\& S_{1}=10=a \\
\& S_{2}=24=a+(a+d) d=4 \\
\& \text { GP } a=64 \text { ar }=48 \rightarrow r=3 / 4 \\
\& \rightarrow 3 \text { rd term is } a r^{2}=36 \\
\& \text { AP } a=64, a+8 d=48 \rightarrow d=-2 \\
\& 36=64+(n-1)(-2) \\
\& \rightarrow n=15 .
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 A1 \\
B1 \\
M1 \\
B1 \\
M1 \\
A1
\end{tabular} \& [3]

[5] \& | correct use of S_{n} formula. |
| :--- |
| $a r^{2}$ numerical - for their r |
| correct use of $a+(n-1) d$ | \\

\hline | (i) |
| :--- |
| (ii) |
| (iii) | \& | $\begin{aligned} & \mathrm{f}: x \mapsto 2 x+k, \mathrm{~g}: x \mapsto x^{2}-6 x+8, \\ & 2(2 x+3)+3=25 \\ & \rightarrow x=4 \\ & \text { or }\{\mathrm{f}(11)=25, \mathrm{f}(4)=11\} \\ & x^{2}-6 x+8=2 x+k \\ & x^{2}-8 x+8-k=0 \\ & \text { Uses } b^{2}-4 a c<0 \\ & \rightarrow k<-8 \\ & x^{2}-6 x+8=(x-3)^{2}-1 \\ & y=(x-3)^{2}-1 \end{aligned}$ |
| :--- |
| Makes x the subject $\rightarrow \pm \sqrt{ }(x+1)+3$ Needs specifically to lose the "-". | \& | M1 |
| :--- |
| A1 |
| M1 |
| M1 |
| A1 |
| B1 B1 |
| M1 A1 $\sqrt{ }$ | \& [2]

[3]

[4] \& | $\mathrm{ff}(x)$ needs to be correctly formed |
| :--- |
| Eliminates y to form eqn in x. Uses the discriminant - even if $=0 .>0$ |
| For " -3 " and " -1 " |
| Makes x the subject, in terms of x and without - or \pm. | \\

\hline
\end{tabular}

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	13

