Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	12

$1 \quad \frac{\mathrm{~d} y}{\mathrm{dx}}=\frac{6}{x^{2}} .$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [3]	Integration only - unsimplified Uses $(2,9)$ in an integral
$2\left(2 x-\frac{1}{2 x}\right)^{6}$ (i) Coeff of $x^{2}=15 \times 16 \times(-1 / 2)^{2}=60$ (ii) Constant term is $20 \times 8 x^{3} \times\left(-1 \div 8 x^{3}\right)$ $\times\left(1+x^{2}\right)$ needs to consider 2 terms $\rightarrow 60-20=40$	$\begin{array}{ll} \text { B1 B1 } & \\ & {[2]} \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & {[3]} \end{array}$	B1 for $2 / 3$ parts. B1 B1 unsimplified Needs to consider the constant term
$3 \quad m x+14=\frac{12}{x}+2 \rightarrow m x^{2}+12 x-12=0$ Uses $b^{2}=4 a c \rightarrow m=-3$ $-3 x^{2}+12 x-12=0 \rightarrow P(2,8)$ [Or $m=-12 x^{-2}$ M1 Sub M1 $x=2$ A1] $[\rightarrow m=-3$ and $y=8$ M1 A1]	M1 M1 A1 DM1 A1 [5]	Eliminates x (or y) Any use of discriminant Any valid method.
4 (i) $B O C=2 \tan ^{-1} 1 / 2=0.9273$ (ii) $O B=\sqrt{ }\left(10^{2}+5^{2}\right)$ or $11.2=r$ Arc $B X C=\sqrt{ } 125 \times 0.9273$ \rightarrow Perimeter $=20.4 \mathrm{~cm}$ (iii) $\begin{aligned} & \text { Area }=1 / 1 / r^{2} \theta \\ & -1 / 2.10 .10 \rightarrow 7.96 \mathrm{~cm}^{2} . \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ & {[2]} \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & {[3]} \\ \text { M1 } & \\ \text { A1 } & \\ & {[2]} \end{array}$	Correct trigonometry. (ans given) Use of trig (or Pyth) for the $O B=\sqrt{ } 125$. Use of $s=r \theta$ with θ in rads, $r \neq 10$ Correct formula used with rads, $r \neq 10$. Allow 7.95 or 7.96
$5 a=\sin \theta-3 \cos \theta, b=3 \sin \theta+\cos \theta$ (i) $a^{2}+b^{2}=$ $\left(s^{2}+9 c^{2}-6 s c\right)+\left(9 s^{2}+c^{2}+6 s c\right)$ $10 c^{2}+10 s^{2}=10$ (ii) $\begin{aligned} & 2 s-6 c=3 s+c \rightarrow s=-7 c \\ & \rightarrow \tan \theta=-7 \\ & \rightarrow 98.1^{\circ} \\ & \text { and } 278.1^{\circ} \end{aligned}$	B1 M1 A1 [3] M1 A1 A1 A1^ [4]	Correct squaring Use of $s^{2}+\mathrm{c}^{2}=1$ to get constant. (can get $2 / 3$ for missing $6 s c$) Collecting and $\mathrm{t}=\mathrm{s} \div \mathrm{c}$ For $180^{\circ}+$ first answer, providing no extra answers in the range.

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	12

$6 \quad \overrightarrow{O A}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}, \quad \overrightarrow{O B}=3 \mathbf{i}+p \mathbf{j}+q \mathbf{k}$ (i) $p=-6, q=6$ (ii) dot product $=0 \rightarrow 3-2 p+4 p=0$ $\rightarrow p=-1.5$ (iii) $\begin{aligned} & \overrightarrow{A B}=\mathrm{b}-\mathrm{a}=2 \mathrm{i}+3 \mathrm{j}+6 \mathbf{k} \\ & \text { Unit vector }=(2 \mathrm{i}+3 \mathrm{j}+6 \mathbf{k}) \div 7 \end{aligned}$		Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=0$ not for $\mathbf{b}-\mathbf{a}$. M1 for division by modulus. \downarrow on B 1 .
$73 y+2 x=33$. Gradient of line $=-2 / 3$ Gradient of perpendicular $=3 / 2$ Eqn of perp $y-3=\frac{3}{2}(x+1)$ Sim Eqns $\rightarrow(3,9)$ $(-1,3) \rightarrow(3,9) \rightarrow(7,15)$	B1 M1 M1 M1 A1 M1 A1 [7]	Use of $m_{1} m_{2}=-1$ with gradient of line Correct form of perpendicular eqn. Sim eqns. Vectors or other method.
8 (i) $\begin{aligned} & \pi r^{2} h=250 \pi \rightarrow h=\frac{250}{r^{2}} \\ & \rightarrow \quad S=2 \pi r h+2 \pi r^{2} \\ & \rightarrow \quad S=2 \pi r^{2}+\frac{500 \pi}{r} \end{aligned}$ (ii) $\begin{aligned} & \frac{\mathrm{d} S}{\mathrm{dr}}=4 \pi r-\frac{500 \pi}{r^{2}} \\ & =0 \text { when } r^{3}=125 \quad \rightarrow r=5 \\ & \rightarrow S=150 \pi \end{aligned}$ (iii) $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=4 \pi+\frac{1000 \pi}{r^{3}}$ This is positive \rightarrow Minimum	M1 M1 [2] B1 B1 M1 A1 [4] M1 A1 [2]	Makes h the subject. $\pi r^{2} h$ must be right Ans given - check all formulae.. B1 for each term Sets differential to $0+$ attempt at soln Any valid method. $2^{\text {nd }}$ differential must be correct - no need for numerical answer or correct r.
$9 \mathrm{f}(x)=\frac{5}{1-3 x}, x \geq 1$ (i) $\mathrm{f}^{\prime}(x)=\frac{-5}{(1-3 x)^{2}} \times-3$ (ii) $15>0$ and $(1-3 x)^{2}>0, \mathrm{f}^{\prime}(x)>0$ \rightarrow increasing (iii) $y=\frac{5}{1-3 x} \rightarrow 3 x=1-\frac{5}{y}$ $\rightarrow \quad \mathrm{f}^{-1}(x)=\frac{x-5}{3 x} \quad$ or $\quad 1 / 3-\frac{5}{3 x}$ Range is ≥ 1 Domain is $-2.5 \leq x<0$	B1 B1 [2] B1 \downarrow [1] M1 A1 B1 B1 B1 [5]	B1 without $\times-3$. B1 for $\times-3$, even if first B mark is incorrect \checkmark providing ($)^{2}$ in denominator. Attempt to make x the subject. Must be in terms of x. must be \geq condone <

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	$\mathbf{9 7 0 9}$	$\mathbf{1 2}$

$10 \quad$ (a) $57=2(24+3 d) \rightarrow d=1.5$
$48=12+(n-1) 1.5 \rightarrow n=25$
(b) $a r^{2}=4 a \quad r= \pm 2$
$\frac{a\left(r^{6}-1\right)}{r-1}=k a$
$\rightarrow k=63$ or $k=-21$
$11 y=\sqrt{1+4 x}$
(i) $\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{1}{2}(1+4 x)^{-\frac{1}{2}} \times 4$
$=2$ at $B(0,1)$
Gradient of normal $=-1 / 2$
Equation $y-1=-1 / 2 \mathrm{x}$
(ii) $\operatorname{At} A x=-1 / 4$
$\int \sqrt{1+4 x} d x=\frac{(1+4 x)^{\frac{3}{2}}}{\frac{3}{2}} \div 4$
Limits $-1 / 4$ to $0 \rightarrow \frac{1}{6}$
Area $B O C=1 / 2 \times 2 \times 1=1$
\rightarrow Shaded area $=\frac{7}{6}$

M1 A1
M1 A1
[4]
B1
B1

B1 B1
[4]

B1 B1

M1
M1 A1

B1
B1 B1
B1
B1 ${ }^{\wedge}$
[5]

Use of correct S_{n} formula.
Use of correct T_{n} formula.
(allow for $r=2$)

B1 Without " $\times 4$ ". B1 for " $\times 4$ " even if first B mark lost.

Use of $m_{1} m_{2}=-1$
Correct method for eqn.

B1 Without the " $\div 4$ ". For " $\div 4$ " even if first B mark lost.

For $1+$ his " $1 / 6$ ".

