Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	73

1 (i)	$\begin{aligned} & z=2.574 \text { to } 2.576 \\ & 12.5 \pm z \frac{3.2}{\sqrt{250}} \\ & 12.0 \text { to } 13.0(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Any z Correct form Allow 12 to 13	
(ii)	0.005 or 0.5%	B1 1	Not just 0	
[Total 4]				
2 (i)	$\begin{aligned} & \mathrm{E}(3 X-Y)=12.1 \\ & \operatorname{Var}(3 X-Y)=9 \times 14+15=(141) \\ & \frac{20-12.1}{\sqrt{1141^{\prime}}} \quad(=0.665) \\ & \Phi\left({ }^{\circ} 0.665^{\prime}\right) \\ & =0.747(3 \mathrm{sfs}) \end{aligned}$	B1 B1 M1 M1 A1 5	Allow wi Correct a	ut $\sqrt{ }$ (No Continuity Correction) consistent with their working
[Total 5]				
3 (i)	$\begin{aligned} & \bar{x}=\frac{7520}{150}=(50.1)(3 \mathrm{sfs}) \\ & s^{2}=\frac{150}{149}\left(\frac{(113540}{150}-\left(\frac{7520}{150}\right)^{2}\right) \\ & =245 \text { or } 246(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 3	Attempt Allow s^{2}	nbiased variance (either formula) $5.7^{2}(3 \mathrm{sfs})$
(ii)	$\begin{aligned} & \frac{53-\frac{7520}{150}}{\sqrt{\frac{245.217^{\prime}}{80}}} \quad(=1.637 \text { to } 1.638) \\ & 1-\Phi\left({ }^{(1.637}\right) \\ & =0.0488 \text { to } 0.0509 \end{aligned}$	M1 M1 A1 3	For Stand their vari Correct a Correct	dising (\pm) with their mean and e must have $\sqrt{ } 80$ (ignore cc) consistent with their working king only
[Total 6]				
4 (i)	$\begin{aligned} & 1-e^{-0.8}(1+0.8) \\ & =0.191(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow one end error	
(ii)	$\begin{aligned} & \lambda=3 \times 0.8+2 \times 2.7 \\ & e^{-7.78^{\prime}}\left(1+7.8+\frac{7.8^{2}}{2}+\frac{7.8^{3}}{3!}+\frac{7.8^{4}}{4!}\right) \\ & =0.112(3 \mathrm{sfs}) \end{aligned} \quad(=7.8)$	M1 M1 A1 3	Attempt find λ $\mathrm{P}(0,1,2,3,4)$ Using their λ. Allow one end error	
(iii)	$e^{-0.8 n}<0.1 \quad$ Allow ${ }^{\prime}=$, $-0.8 n<\ln 0.1 \quad$ Allow ' $=$ ' $\min n=3$	$\begin{aligned} & \text { M1* } \\ & \text { M1* } \\ & \text { dep } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { or } e^{-x}< \\ & 0.1 \\ & -x<\ln 0.1 \\ & \\ & \begin{array}{l} \text { Correctly } \\ \text { obtained } \end{array} \end{aligned}$	$\left.e^{-1.6}=0.20\right\} \quad$ M1 for trial and improvement to find $\mathrm{P}(0)$ try $n=2$ $\left.e^{-2.4}=0.09 \quad\right\} \quad$ M1*dep try $n=3$ both correct $n=3 \quad$ A1
[Total 8]				

Page 5 Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2012	9709	73

5 (i)	$\begin{aligned} & \mathrm{P}(>9 \text { Heads } \mid \text { unbiased })= \\ & { }^{12} \mathrm{C}_{10} \times 0.5^{10} \times 0.5^{2}+12 \\ & \times 0.5^{11} \times 0.5+0.5^{12} \end{aligned}$ $=0.0193$ Level is 1.93% or 1.9%	M1 M1 A1 3	Allow $\operatorname{Bin} \mathrm{P}(X=9,10,11,12)$ correct or $1-$ $\mathrm{P}(\mathrm{X}=(9), 10,11,12)$ any p / q Allow Bin $\mathrm{P}(\mathrm{X}=9,10,11,12)$ correct p / q Allow 2\% if correct working seen
(ii)	$\begin{aligned} & \mathrm{B}(100,0.5) \approx \mathrm{N}(50,25) \\ & \frac{x-0.5-^{\prime} 50^{\prime}}{\sqrt{25 \prime}}=z \\ & z=1.645 \\ & x=58.7 \\ & \text { Rejection region is }>59 \end{aligned}$	B1 M1 B1 A1 Alft 5	Or proportion method $\mathrm{N}(0.5,0.0025)$ Allow with wrong or no cc or no $\sqrt{ }$ (cc for proportion method $0.5 / 100$) + only (consistent with their standardisation) or >58 (region and integer required)
[Total 8]			
6 (i)	Test is for bias in one direction One-tail	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	'Increased' rather than 'changed' or statement that $\mu>45.7$ dep $1^{\text {st }}$ B1
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \text { pop mean }=45.7 \\ & \mathrm{H}_{1}: \text { pop mean }>45.7 \\ & \bar{x}=47.375 \text { or } 47.4 \text { or } 379 / 8 \\ & \frac{147.375^{\prime}-245.7}{\frac{3.2}{\sqrt{8}}} \\ & (=1.481 \text { to } 1.503)) \\ & z=1.645 \\ & ' 1.481 \text { ' }<1.645 \end{aligned}$ hence no evidence mean time increased (AG)	$\begin{array}{\|ll} \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ & \\ \text { M1 } & \\ & \\ \text { A1 } & 5 \end{array}$	Allow μ, but not 'mean' (follow through their (i)) Allow without $\sqrt{ }$ Explicit comparison with their z from table Comparison with 1.645 or probability (0.0664 to 0.0693) with 0.05 Correct conclusion - accept H0 No errors seen
	Not rejected H_{0} Type II possible	$\begin{array}{\|ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	dep $1^{\text {st }} \mathrm{B} 1$ No contradictions for either mark
[Total 9]			

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	73

$7 \quad$ (i)	$\begin{aligned} & k \int_{0}^{\frac{2 \pi}{3}} \sin x \mathrm{~d} x=1 \\ & k[-\cos x]_{0}^{\frac{2 \pi}{3}} \\ & k\left[-\cos \frac{2 \pi}{3}+\cos 0\right]=1 \\ & k[0.5+1]=1 \\ & \left(k=\frac{2}{3} \quad \mathbf{A G}\right) \end{aligned}$	$\text { A1 } 2$	Integ \& $=1$. Ignore limits Must see this line or next
(ii)	$\begin{aligned} & \frac{2}{3} \int_{0}^{m} \sin x \mathrm{~d} x=0.5 \\ & \frac{2}{3}[-\cos x]_{0}^{m}=0.5 \\ & \frac{2}{3}(-\cos m+1)=0.5 \\ & \cos m=0.25 \\ & m=1.32(3 \mathrm{sfs}) \quad \mathbf{A G} \end{aligned}$	$\begin{array}{ll} \text { M1* } & \\ \text { M1* } \\ \text { dep } \\ \text { den } \end{array}$	Integ $\&=0.5$. Ignore limits Correct integrand \& limits 0 to unknown $\&=$ 0.5 But allow $\mathrm{a} \cos \mathrm{m}=\mathrm{b}$ where $\mathrm{b} / \mathrm{a}=0.25$ dep $\cos m=0.25$ seen NB accept full verification
(iii)	$\begin{aligned} & \frac{2}{3} \int_{0}^{\frac{2 \pi}{3}} x \sin x \mathrm{~d} x \\ & =\frac{2}{3}\left\{[x(-\cos x)]_{0}^{\frac{2 \pi}{3}}-\int_{0}^{\frac{2 \pi}{3}}(-\cos x) d x\right\} \\ & =\frac{2}{3}\left\{\frac{\pi}{3}-0-[-\sin x]_{0}^{\frac{2 \pi}{3}}\right. \\ & =\frac{2}{3}\left(\frac{\pi}{3}+\sin \frac{2 \pi}{3}\right) \\ & =\frac{2 \pi+3 \sqrt{3}}{9} \text { or } 1.28(3 \mathrm{sf}) \end{aligned}$	M1M1* depM1* depA1 $\quad 4$	Integ $x \mathrm{f}(x)$. Ignore limits $1^{\text {st }}$ step attempted ie $x(-\cos x)$ oe. Ignore limits $2^{\text {nd }}$ step attempted including correct limits applied oe
[Total 10]			

