| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2012 | $\mathbf{9 7 0 9}$ | $\mathbf{7 2}$ |

Note: "( 3 sfs )" means "answer which rounds to.. to 3 sfs ". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding. Penalise $<3$ sfs only once in paper.

| 1 (i) | $\mathrm{H}_{0}$ : Pop mean $=3 \mathrm{H}_{1}$ : Pop mean $>3$ | B1 [1] | Allow or $\mu$ or $\lambda$, but not just 'mean' |
| :---: | :---: | :---: | :---: |
| (ii) | $0.0683>0.05$ <br> No evidence that pop mean increased | M1 <br> A1ft [2] | For inequality stated or clearly shown on dig. <br> Allow 'No increase in mean' |
| [Total: 3] |  |  |  |
| 2 (i) | 7, ${ }^{3 / 1} n$ | B1, B1 [2] | oe |
| (ii) (a) | Pop is normal | B1 [1] | Allow $X$ is normal |
| (b) | Large sample | B1 [1] | or large $n$ (can be implied by $\mathrm{n} \geq 30$ ) |
| [Total: 4] |  |  |  |
| 3 (i) | $\begin{aligned} & p=18 / 50 \text { or } 0.36 \mathrm{oe} \\ & z=2.326 \\ & 0.36 \pm z \sqrt{\frac{0.36 \times(1-0.36)}{50}} \\ & =0.202 \text { to } 0.518(3 \mathrm{sfs}) \end{aligned}$ | B1 <br> B1 <br> M1 <br> A1 [4] | Allow any $z$ ( $\neq 0$ or 1 ) <br> Allow any brackets or none |
| (ii) | Sample random | B1 [1] | oe |
| [Total: 5] |  |  |  |
| 4 (i) | $\begin{aligned} & \lambda=8 \times 0.32+12 \times 0.45 \quad(=7.96) \\ & 1-\mathrm{e}^{-7.96}\left(1+7.96+\frac{7.96^{2}}{2}\right) \\ & =0.986(3 \mathrm{sfs}) \end{aligned}$ | M1 <br> M1 <br> A1 [3] | $1-\mathrm{P}(X \leq 2)$, any $\lambda$ allow one end error |
| (ii) | $\begin{aligned} & \lambda=155 \times 0.32=49.6 \\ & \mathrm{~N}\left({ }^{‘} 49.66^{\prime}, 49.6^{\prime}\right) \\ & \frac{34.5-49.6^{\prime}}{\sqrt{\prime} 499.6^{\prime}} \\ & \Phi\left({ }^{‘}-2.144^{\prime}\right)=1-\Phi\left({ }^{\prime} 2.144^{\prime}\right) \\ & =0.016(0) \end{aligned}$ | B1 <br> M1 <br> M1 <br> M1 <br> A1 [5] | $\mathrm{N}(\lambda \lambda)$ any $\lambda$. May be implied Allow no or wrong cc \& no $\sqrt{ }$ <br> Correct area consistent with their working |
| [Total: 8] |  |  |  |
| 5 (i) | $\begin{aligned} & F+J \sim \mathrm{~N}\left(24,2.8^{2}+2.6^{2}\right) \\ & \frac{30-24}{\sqrt{14.6^{\prime}}}(=1.570) \\ & \mathrm{P}(F+J<30)=\Phi\left({ }^{( } 1.570^{\prime}\right) \\ & 0.942(3 \mathrm{sfs}) \end{aligned}$ | B1 <br> M1 <br> M1 <br> A1 [4] | or $\mathrm{N}(24,14.6)$ for correct mean and variance <br> Allow without $\sqrt{ }$ (ignore false cc) <br> Correct area consistent with their working |


| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2012 | 9709 | 72 |


| (ii) | $\begin{aligned} & F-2 J \sim \mathrm{~N}\left(-11.4,2.8^{2}+4 \times 2.6^{2}\right) \\ & \frac{0-(-11.4)}{\sqrt{34.88^{\prime}}} \quad(=1.930) \\ & \mathrm{P}(F-2 J)>0 \\ & =1-\Phi\left({ }^{\prime} 1.930^{\prime}\right) \\ & =0.0268(3 \mathrm{sfs}) \end{aligned}$ | B1 <br> M1 <br> M1 <br> A1 [4] | or $\mathrm{N}(-11.4,34.88)$ for correct mean and variance <br> Allow without $\sqrt{ }$ (ignore false cc) <br> Correct area consistent with their working or similar scheme using $2 J-F$ |
| :---: | :---: | :---: | :---: |
| [Total: 8] |  |  |  |
| 6 (i) | $\begin{aligned} & \int_{4}^{25} k x^{-\frac{1}{2}} \mathrm{~d} x=1 \\ & {\left[\frac{k x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{4}^{25}=1} \\ & 2 k(5-2)=1 \\ & \left(k=\frac{1}{6} \quad \text { AG }\right) \end{aligned}$ | M1 <br> A1 [2] | Attempt integrate $\&=1$. Ignore limits <br> or equiv correct subst of correct limits |
| (ii) | $\begin{aligned} & \frac{1}{6} \int_{4}^{25} x^{\frac{1}{2}} \mathrm{~d} x \\ & =\frac{1}{6}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{4}^{25}\left(=\frac{1}{9}(125-8)\right. \\ & =13 \end{aligned}$ | M1 <br> A1 <br> A1 [3] | Attempt integ $x \mathrm{f}(x)$. Ignore limits <br> Correct integrand and limits <br> Or 117/9 |
| (iii) | $\begin{aligned} & \frac{1}{6} \int_{20}^{25} x^{-\frac{1}{2}} \mathrm{~d} x \\ & \left(=\frac{1}{6}\left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{20}^{25}=\frac{1}{3}(5-\sqrt{ } 20)\right) \\ & =0.176(3 \mathrm{sfs}) \end{aligned}$ | M1 <br> A1 [2] | Attempt integ $\mathrm{f}(x)$ from 20 to 25 Or $1-\int_{4}^{20}$ <br> Accept surd form |
| (iv) | Wkly demand may be > 25 (or $<4$ ) | B1 [1] | or other sensible |
| [Total: 8] |  |  |  |
| 7 (i) | $\begin{aligned} & \mathrm{H}_{0}: \mu=2.0 \quad \mathrm{H}_{1}: \mu \neq 2.0 \\ & \bar{x}=\frac{430}{200}=2.15 \\ & s^{2}=\frac{200}{199}\left(\frac{1290}{200}-\left(\frac{430}{200}\right)^{2}\right) \\ & =1.836834 \\ & \frac{2.15-2.0}{\sqrt{\frac{1.836834^{\prime}}{200}}} \quad(=1.565) \\ & z=1.645 \end{aligned}$ <br> No evidence that $\mu \neq 2.0$ | B1 <br> B1 <br> B1 <br> M1 <br> M1 <br> A1 [6] | For $\bar{x}$ <br> Correct subst in $s^{2}$ formula <br> For $s^{2}$ correct ( or $s=1.35524$ ) <br> For standardising (need 200) accept sd/var mixes <br> For correct comparison of z values or areas <br> Cwo (condone biased variance for last 3 marks) |


| (ii) (a) | Concluding $\mu=2.0$ although not true | B1 [1] | Not concluding $\mu \neq 2.0$ although this is true |
| :---: | :---: | :---: | :---: |
| (b) | $\begin{aligned} & \frac{\bar{x}-2.0}{\sqrt{\frac{1.85}{200}}}=1.645 \\ & \bar{x}=2+0.1582 \\ & \text { Rejection region is } \\ & \bar{x}<1.8418 \text { and } \bar{x}>2.1582 \\ & \frac{2.1582-2.12}{\sqrt{\frac{1.85}{200}}} \quad(=0.397) \\ & \mathrm{P}(\bar{x}<2.1582 \mid \mu=2.12)=\Phi\left({ }^{\prime} 0.397 \prime\right) \\ & =0.6543 \\ & \frac{1.8418-2.12}{\sqrt{\frac{1.85}{200}}} \quad(=-2.893) \\ & \mathrm{P}(\bar{x}<-2.893 \mid \mu=2.12)=1-\Phi\left({ }^{\prime} 2.8933^{\prime}\right) \\ & (=0.0019) \\ & \Rightarrow \mathrm{P}(1.8418<\bar{x}<2.1582 \mid \mu=2.12) \\ & =0.6543-0.0019 \\ & =0.6524 \\ & \mathrm{P}(\mathrm{Type} \mathrm{II} \text { error })=0.652(3 \mathrm{sfs}) \end{aligned}$ | M1 <br> A1 <br> M1 <br> M1 <br> M1 <br> M1 <br> A1 [7] | Attempt at finding rejection region <br> Using only RH tail (ans 0.654 ) scores max M1A0M1M1M0M0A0 <br> SR If zero scored allow SC M1 for one standardisation attempt with den $\sqrt{ }(1.85 /$ 200) |
| [Total: 14] |  |  |  |

