		970	9 s12 ms 72	2
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2012	9709	72	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise < 3 sfs only once in paper.

1	(i)	H ₀ : Pop mean = 3 H ₁ : Pop mean > 3	B1 [1]	Allow or μ or λ , but not just 'mean'
	(ii)	0.0683 > 0.05	M1	For inequality stated or clearly shown on
		No evidence that pop mean increased	A1ft [2]	dig. Allow 'No increase in mean'
			[Total: 3]	
2	(i)	$7, {}^{3}/_{\sqrt{n}}$	B1, B1 [2]	oe
	(ii) (a)	Pop is normal	B1 [1]	Allow X is normal
	(b)	Large sample	B1 [1]	or large <i>n</i> (can be implied by $n \ge 30$)
			[Total: 4]	
3	(i)	$p = \frac{18}{50}$ or 0.36 oe z = 2.326	B1 B1	
		$0.36 \pm z \sqrt{\frac{0.36 \times (1 - 0.36)}{50}}$	M1	Allow any $z \neq 0$ or 1)
		= 0.202 to 0.518 (3 sfs)	A1 [4]	Allow any brackets or none
	(ii)	Sample random	B1 [1]	oe
			[Total: 5]	
4	(i)	$\lambda = 8 \times 0.32 + 12 \times 0.45 (= 7.96)$	M1	
		$1 - e^{-7.96}(1 + 7.96 + \frac{7.96^2}{2})$	M1	$1 - P(X \le 2)$, any λ allow one end error
		= 0.986 (3 sfs)	A1 [3]	
	(ii)	$\lambda = 155 \times 0.32 = 49.6$ N('49.6', '49.6') $\frac{34.5 - '49.6'}{\sqrt{'49.6'}} \qquad (= -2.144)$	B1 M1 M1	N (λ λ) any λ . May be implied Allow no or wrong cc & no $$
		$\Phi(`-2.144') = 1 - \Phi(`2.144')$ = 0.016(0)	M1 A1 [5]	Correct area consistent with their working
			[Total: 8]	
5	(i)	$F + J \sim N(24, 2.8^2 + 2.6^2)$	B1	or N(24, 14.6) for correct mean and variance
		$\frac{30-24}{\sqrt{14.6'}}$ (= 1.570)	M1	Allow without $\sqrt{\text{(ignore false cc)}}$
		$P(F + J < 30) = \Phi(`1.570')$ 0.942 (3 sfs)	M1 A1 [4]	Correct area consistent with their working

Ba	ige 5	Mark Schoma: Ta	abors' vorsion	970 Syllabus	9 s12 ms 72 Paper
Fd	ige 5		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012		72
(ii)	$\frac{0 - (-11.4)}{\sqrt{34.88'}} (= 1.930)$		B1	or N(-11.4, 34.88) for correct mean and variance	
			M1	Allow without $\sqrt{\text{(ignore false cc)}}$	
	$P(F - 2J) = 1 - \Phi(0) = 0.0268$	(1.930')	M1 A1 [4]	Correct area consistent or similar scheme using	•
			[Total: 8]		
6 (i)	$\int_{4}^{25} k x^{-\frac{1}{2}}$	dx = 1	M1	Attempt integrate & = 1. Ignore limits	
	$\begin{bmatrix} \frac{1}{kx^2} \\ \frac{1}{2} \end{bmatrix}_{4}^{25}$				
	$2k(5-2)$ $(k = \frac{1}{6})$		A1 [2]	or equiv correct subst of	f correct limits
(ii)	$\frac{1}{6}\int_{4}^{25}x^{\frac{1}{2}}$		M1	Attempt integ $xf(x)$. Ign	ore limits
	$= \frac{1}{6} \left\lfloor \frac{\frac{3}{2}}{\frac{3}{2}} \right\rfloor$	$ \end{bmatrix}_{4}^{25} (= \frac{1}{9}(125 - 8) $	A1	Correct integrand and li	mits
	= 13		A1 [3]	Or 117/9	
(iii)	$\frac{\frac{1}{6} \int_{20}^{25} x^{-\frac{1}{2}}}{\left(= \frac{1}{6} \left[\frac{\frac{1}{2}}{\frac{1}{2}} \right]} \right)^{\frac{1}{2}}$	$\int_{20}^{\frac{1}{2}} dx = \frac{1}{3}(5 - \sqrt{20}))$	M1	Attempt integ $f(x)$ from Or $1 - \int_{4}^{20}$	20 to 25
	= 0.176		A1 [2]	Accept surd form	
(iv)	Wkly de	mand may be > 25 (or < 4)	B1 [1]	or other sensible	
			[Total: 8]		
7 (i)		2.0 H ₁ : $\mu \neq 2.0$	B1		
	$\overline{x} = \frac{430}{200}$		B1	For \overline{x}	
	$s^2 = \frac{200}{199}$ = 1.8366	$\frac{(1290)}{200} - (\frac{430}{200})^2)$ 5834	B1	Correct subst in s^2 form For s^2 correct (or $s = 1.3$	
	$\frac{2.15-2.0}{\sqrt{\frac{11.8366834}{200}}}$	= (= 1.565)	M1	For standardising (need sd/var mixes	· -
	<i>z</i> = 1.645	5	M1	For correct comparison areas	
	No evide	ence that $\mu \neq 2.0$	A1 [6]	Cwo (condone biased va marks)	ariance for last 3

Page 6		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012		Syllabus 9709	Paper 72
(ii) (a)	Concludir	ag $\mu = 2.0$ although not true	B1 [1]	Not concluding $\mu \neq 2.0$ true) although this is
(b)	$\frac{2.1582-2.1}{\sqrt{\frac{1.85}{200}}}$ P($\bar{x} < 2.1$ = 0.6543 $\frac{1.8418-2.}{\sqrt{\frac{1.85}{200}}}$ P($\bar{x} < -2$	1582 region is 8 and $\bar{x} > 2.1582$ 12 (= 0.397) 582 μ = 2.12) = $\Phi(`0.397')$ 12 (= - 2.893) .893 μ = 2.12) = 1 - $\Phi(`2.893')$	M1 A1 M1 M1 M1 M1	Attempt at finding reje	ection region
	= 0.6543 = 0.6524	$18 < \bar{x} < 2.1582 \mid \mu = 2.12$	A1 [7]	Using only RH tail (ar max M1A0M1M1M0 SR If zero scored allow standardisation attemp 200)	M0A0 w SC M1 for one
			[Total: 14]		