Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding. Penalise <3 sfs only once in paper

1	$\begin{aligned} & z=2.326 \\ & 494 \pm z \times \frac{23}{\sqrt{150}} \\ & =490 \text { to } 498(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 [3]	seen Any z
2	$\begin{aligned} & (0.75 \times 54.8+0.25 \times 82.4=) 61.7 \\ & 0.75^{2} \times 16.0^{2}+0.25^{2} \times 4.8^{2} \\ & (=145.44) \\ & \text { sd }=12.1(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 [3]	No need for V for M1
3	$\begin{aligned} & \mathrm{H}_{0}: p=0.15 \\ & \mathrm{H}_{1}: p>0.15 \end{aligned}$ $\begin{aligned} & (\mathrm{N}(300 \times 0.15,300 \times 0.15 \times 0.85)) \\ & =\mathrm{N}(45,38.25) \\ & \frac{59.5-^{\prime}+5^{\prime}}{\sqrt{38.25^{\prime}}}(=2.345) \end{aligned}$ Allow wrong or no cc $z=1.96 \quad 2.345>1.96$ Evidence prop is higher for new plan	B1 B1 M1 M1 A1 [5]	or H_{0} : Approval rate same for new as for old H_{1} : Approval rate for new $>$ for old $\begin{aligned} & \left(\mathrm{N}\left(0.15, \frac{0.15 \times 0.85}{300}\right)\right) \\ & =\mathrm{N}(0.15,0.000425) \\ & \text { or } \frac{\frac{59}{300}+\frac{0.5}{30}-{ }^{-} 0.15^{\prime}}{\sqrt{ }{ }^{\prime 0.000425^{\prime}}}(=2.345) \end{aligned}$ Allow wrong or no cc comparison (or area comparison) cwo
4 (i)	$\begin{aligned} & \int_{0}^{1} \frac{k}{(x+1)^{2}} \mathrm{~d} x=1 \\ & -\left[\frac{k}{(x+1)}\right]_{0}^{1}=1 \\ & -k\left(\frac{1}{2}-1\right)=1 \\ & (k=2 \mathbf{A G}) \end{aligned}$	M1 A1 [2]	Any attempt integ $\mathrm{f}(x) \&=1$. Ignore limits oe, with limits inserted correctly
(ii)	$\begin{aligned} & \int_{0}^{a} \frac{2}{(x+1)^{2}} \mathrm{~d} x=\frac{1}{5} \\ & -\left[\frac{2}{(x+1)}\right]_{0}^{a}=\frac{1}{5} \\ & -\left(\frac{2}{a+1}-2\right)=\frac{1}{5} \\ & a=\frac{1}{9} \end{aligned}$	M1 A1 A1 [3]	Attempt integ $\mathrm{f}(x) \&=\frac{1}{5}$ (oe), ignore limits oe, with correct limits inserted correctly
(iii)	Area below $x=0.5$ is greater than 0.5 $m<0.5$	B1 B1dep [2]	oe, eg More area at left hand end

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	71

5 (i) (a)	$\begin{aligned} & \mathrm{P}(X \geq 3)=1-\mathrm{e}^{-3.2}\left(1+3.2+\frac{3.2^{2}}{2!}\right) \\ & =0.62(0)(3 \mathrm{sf}) \end{aligned}$	M1 A1 [2]	Allow one end error		
(b)	$\begin{aligned} & \mathrm{P}(X=3)=\mathrm{e}^{-3.2}\left(\frac{3.2^{3}}{3}\right) \quad(=0.22262) \\ & \left(\frac{P(X=3 \cap X \geq 3)}{P(X \geq 3)}=\frac{P(X=3)}{P(X \geq 3)}\right) \\ & =\frac{{ }^{\prime} 0.22262^{\prime}}{\prime 0.62010^{\prime}} \\ & =0.359(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	May be implied		
(ii) (a)	(Approx) normal with mean 3.2 $\begin{aligned} & \text { variance }=\frac{3.2}{120} \text { or } \frac{2}{75} \text { or } 0.0267 \\ & (3 \mathrm{sfs}) \text { oe } \end{aligned}$	B1 B1 [2]	or $\mathrm{sd}=\sqrt{\frac{3.2}{120}}$ or $0.163(3 \mathrm{sfs})$ oe		
(b)	$\begin{aligned} & \frac{3.3-3.2}{\sqrt{\frac{3.2}{120}}}(=0.612) \\ & \Phi(" 0.612 ") \\ & =0.730(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	Allow with cc attempted Accept 0.73		
6 (i)	$\begin{aligned} & \bar{x}=1.96 \\ & \left(\Sigma x^{2} f=254\right) \\ & S^{2}=\frac{50}{49} x\left(\frac{254}{50}-1.96^{2}\right) \\ & =\frac{1548}{1225} \text { or } 1.2637 \end{aligned}$	B1 M1 A1 [3]	Correct sub in S^{2} formula		
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=1.66 \\ & \mathrm{H}_{1}: \text { Pop mean } \neq 1.66 \\ & \frac{1.96-1.66}{\sqrt{\frac{1.2637}{50}}} \\ & =1.887 \\ & z=1.96 \quad 1.887<1.96 \end{aligned}$ No evidence that mean has changed	B1 M1 A1 M1 $\mathrm{A1}_{\mathrm{ft}}$ [5]	In context	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=1.66 \\ & \mathrm{H}_{1}: \text { Pop mean }>1.66 \\ & \frac{1.96-1.66}{\sqrt{\frac{1.2637}{50}}} \\ & =1.887 \\ & z=1.645 \end{aligned}$ Evidence mean has changed	B0 M1 A1 M1 $\mathrm{Al}_{\mathrm{ff}}$
(iii)	No because H_{0} not rejected	$\mathrm{B}^{\mathrm{B}}{ }_{[1]}$	If H_{0} rejected in (ii): Yes because H_{0} rejected		
(iv)	State mean not changed when it has $-1.96<\text { test stat }<1.96$	B1 B1 [2]	In context	State mean not increased whe has $\text { test stat }<1.645$	$\begin{array}{r} \text { n it } \\ \text { B1 } \\ \text { B1 } \end{array}$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2012	9709	71

| 7 (i) | $\lambda=5$
 $1-\mathrm{e}^{-5}\left(1+5+\frac{5^{2}}{2!}\right)$
 $=0.875$ | B1 | |
| :---: | :---: | :--- | :--- | :--- |

