Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	51

Page 5 Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2012	9709	51

5 (i)	$\begin{aligned} & 0.4 v \mathrm{~d} v / \mathrm{d} x=0.4 g \sin 30-0.6 x \\ & \int v \mathrm{~d} v=\int(5-1.5 x) \mathrm{d} x \\ & v^{2} / 2=5 x-1.5 x^{2} / 2(+\mathrm{c}) \\ & 0.4 g \sin 30-0.6 x=0 \\ & x=3 \frac{1}{3} \\ & v^{2} / 2=5 \times 10 / 3-1.5 \times(10 / 3)^{2} / 2 \\ & v=4.08 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1 M1 A1 M1 A1 [7]	Newton's Second Law, - sign essential Accept uncancelled integration Accept omission of c Maximum speed when acceleration $=0$ Accept 10/3
	$\begin{aligned} & 0=5 x-1.5 x^{2} / 2 \\ & x=6 \frac{2}{3}=6.67 \end{aligned}$	M1 A1 [2]	Uses $v=0$ appropriately Not 20/3
$6 \quad \text { (i) }$	$\begin{aligned} & 1.5 \times 0.4 \times 0.2+1 \times 1 \times 0.9 \\ & =(1 \times 1+1.5 \times 0.4) d \end{aligned}$ or $\begin{aligned} & 0.5 \times 0.4 \times 0.2+1 \times 1.4 \times 0.7 \\ & =(0.5 \times 0.4+1 \times 1.4) d \end{aligned}$ or $\begin{aligned} & 1.5 \times 1.4 \times 0.7-1 \times 0.5 \times 0.9 \\ & =(1.5 \times 1.4-1 \times 0.5) d \\ & d=0.6375 \end{aligned}$	M1 A1 A1 [3]	Table of moments idea Uses area or any weight $/ \mathrm{m}^{2}$ value Accept 0.637 or 0.638
(ii)	$\begin{aligned} & F \times 1.5=120 \times 0.6375 \\ & F=51 \\ & F \times 1.5=120 \times(0.6375-0.4) \\ & F=19 \\ & 51>F>19 \end{aligned}$	M1 A1 M1 A1 M1 A1§ [6]	Moments about O Candidates consider both cases $\hat{\gamma}[\operatorname{cv}($ two values of $F)]$ accept $>$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{5 1}$

