		970	9 s12 ms 43
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	43

4			2.61		
1			M1		For using WD = Fdcos α
		$WD = 6 \times (0.5 \times 8) \cos 24^{\circ}$	A1		
		Work done is 21.9 J	A1	[3]	
2	(i)		M1		For resolving forces horizontally or vertically
		$T\cos\theta + T\sin\theta = 11.2$ (or - Tcos θ + Tsin θ = 0.16g)	A1		
		$-\operatorname{Tcos} \theta + \operatorname{Tsin} \theta = 0.16g$ (or Tcos θ + Tsin θ = 11.2)	A1	[3]	
	(ii)	$[T\cos\theta = 4.8 \text{ and } T\sin\theta = 6.4 \text{ and} T^{2} = 4.8^{2} + 6.4^{2} \text{ or } \tan\theta = 6.4/4.8] [4T^{2}(\cos^{2}\theta + \sin^{2}\theta) = (11.2 - 1.6)^{2} + (11.2 + 1.6)^{2} or 2T\sin\theta \div 2T\cos\theta = (11.2 + 1.6) \div (11.2 - 1.6) or (T\cos\theta + T\sin\theta) \div (-T\cos\theta + T\sin\theta)$			For finding $T\cos\theta$ and $T\sin\theta$ and hence finding T or θ , OR for finding the value of $4T^2(\cos^2\theta + \sin^2\theta)$ or of $2T\sin\theta \div 2T\cos\theta$ or of $(T\cos\theta + T\sin\theta) \div (-T\cos\theta + T\sin\theta)$
		$= 11.2 \div 1.6$]	M1		
		T = 8 (or θ = 53.1)	A1		
		$\theta = 53.1 \text{ or } T = 8$	A1	[3]	
3	(i)		M1		For using $s = \int v dt$
		$s = 0.027(10t^3/3 - t^4/4) \qquad (+C)$	A1		
		$s = 0.027[10\ 000/3 - 10000/4]$	DM1		For finding the value of <i>t</i> at A and using limits or equivalent
		Distance is 22.5 m	A1	[4]	
	(ii)	$[0.027(20t - 3t^2) = 0 \rightarrow t = 20/3]]$	M1		For using $dv/dt = 0$
		$v_{\rm max} = 0.027(4000/9 - 8000/27)$	A1ft		ft incorrect t in $0.027(10t^2 - t^3)$
		Maximum speed is 4 ms ⁻¹	A1	[3]	

	Do	ao 5	Mark Scheme: Te	achere' vore	ion		970 Syllabus	9_s12_ms_43 Paper
Page 5		ge o	GCE AS/A LEVEL					
					.012		5705	43
4	(i)	(i) [When $4 < v < 6$, $a_{ave} = (6-4)/(0.5-0)$; when $19 < v < 21$ $a_{ave} = (21-19)/(24.5-16.3)$]		0); M1		For usin	ng $a \approx \frac{\Delta v}{\Delta t}$	
			ccelerations are 1 0.244 ms ⁻²	A1	[2]			
	(ii)	$\mathrm{DF}(5) = \mathrm{P}$	/5 and DF(20) = P/20	B1				
		[DF - R =	ma]	M1		For usin	ng Newton's 2 nd	aw
			1230 × 4 and = 1230 × 0.244	A1ft		ft incor	rect average a va	lues
		P = 30800	(or R = 1240)	B1				
		R = 1240	(or P = 30800)	B1ft	[5]		$1230a_1 \text{ or } P/20 - 30a_1 + R) \text{ or } 20(1)$	-
5	(i)	WD again	st resistance = 800×500	B1				
		[2800000) = PE gain + 400 000]	M1			ng WD by the dri n + WD against re	•
		[2 400 000	$0 = 16000 \mathrm{g} \times 500 \mathrm{sin} \alpha$	M1		For usin	ng PE gain = mgl	$-\sin \alpha$
		α = 1.7		A1	[4]			
	(ii)	[KE gain = 800 000]	= 2400000 + 2400000 -	M1			ng KE gain = WI PE loss – WD ag	
		4000 000 .	J	Alft		ft PE ga	ain	
		[½ 16000	$(v^2 - 20^2) = 4000000]$	M1			$gain = \frac{1}{2} m(v^2 - \frac{1}{2})$	
		Speed is 3	0 ms^{-1}	A1	[4]			
jus t Use	tifica es Nev	tion	candidates who assume const ond Law and $v^2 = u^2 + 2as$ [48 1	C				
		Alternativ	ve Method for Part (i)					
	(i)	[DF – mgs For using	$brce = 2800\ 000 \div 500$ sina - R = m × 0] Newton's second law	B1 M1				
			$10\sin\alpha = 5600 - 800$] g the resultant equation for α	DM1 A1	[4]			

Pa	age 6	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012			9709 s12 ms 4 Syllabus Paper		
		GCE AS/A LEVEL – N	lay/June	2012	9709 43		
6 (i)			M1		For resolving forces parallel to the plane		
	F = 5.9 -	$-6.1\sin\alpha$	A1				
	R = 6.1c	$\cos \alpha$	B1				
	[5.9-6.	$1\sin\alpha \leq \mu (6.1\cos\alpha)$]	M1		For using $F \leq \mu R$		
	$\mu > \frac{4}{5}$		A1	[5]	AG		
(ii)	[6.1 × (1	$1/61) + 5.9 - \mu 6.1 \times (60/61) > 0]$	M1		For using $F = \mu R$ and 'net downward force > 0'		
	$\mu < \frac{7}{6}$		A1	[2]	AG		
(iii)	$[6.1 \times (1)]{0.61 \times 1}$	$1/61) + 5.9 - \mu \ 6.1 \times (60/61) = 7]$	M1		For using Newton's 2^{nd} law and $F = \mu R$		
	$\mu = 0.994$	4	A1	[2]			
7 (i)	,				For using Newton's second law		
		2g = 0.12a & 0.38g - T = 0.38a; $\frac{-0.12}{+0.12}g$]	M1		for A and B or for using $a = \frac{M - m}{M + m}g$		
	Accelera	tion is 5.2 ms ^{-2}	A1	[2]			
(ii)	$[v^2 = 2 \times$	$5.2 \times 0.65; 0.65 = \frac{1}{2} 5.2 T_{B}^{2}$	M1		For using $v^2 = 2ah$ or $s = \frac{1}{2}at^2$		
	Speed of	$^{\circ}B$ is 2.6ms $^{-1}$ or $T_{B} = 0.5$	A1ft		ft incorrect a		
	$T_{\rm B} = 0.5$	or Speed of B is 2.6ms ⁻¹	B1	[3]			
(iii)	[-2.6=	2.6 – 10(T – 0.5)]	M1		For using $-V = V - g(T - T_B)$ or equivalent		
	T = 1.02		Alft		ft incorrect V and/or $T_{\rm B}$		
		graph for $0 < t < 1.02$ ect values of V, T and T _B	B1ft	[3]	0.5 1.02		
(iv)	[0.65 + 0	0.5(1.02 – 0.5)2.6]	M1		For using 'total distance = $\frac{1}{2} (VT_B) + 2 x \frac{1}{2} \frac{T_A - T_B}{2} V$		
	Total dis	tance is 1.326 m (accept 1.33)	A1	[2]			