Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	43

1			M1		For using WD $=$ Fdcos α
		WD $=6 \times(0.5 \times 8) \cos 24^{\circ}$	A1		
		Work done is 21.9 J	A1	[3]	
2	(i)		M1		For resolving forces horizontally or vertically
		$\begin{aligned} & \mathrm{T} \cos \theta+\mathrm{T} \sin \theta=11.2 \\ & \quad(\mathrm{or}-\mathrm{T} \cos \theta+\mathrm{T} \sin \theta=0.16 \mathrm{~g}) \end{aligned}$	A1		
		$\begin{aligned} & -\mathrm{T} \cos \theta+\mathrm{T} \sin \theta=0.16 \mathrm{~g} \\ & \quad \text { (or } \mathrm{T} \cos \theta+\mathrm{T} \sin \theta=11.2 \text {) } \end{aligned}$	A1	[3]	
(ii)		$\begin{aligned} & {[\mathrm{T} \cos \theta=4.8 \text { and } \mathrm{T} \sin \theta=6.4 \text { and }} \\ & \left.\mathrm{T}^{2}=4.8^{2}+6.4^{2} \text { or } \tan \theta=6.4 / 4.8\right] \\ & {\left[4 \mathrm{~T}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\right.} \\ & (11.2-1.6)^{2}+(11.2+1.6)^{2} \\ & \text { or } 2 \mathrm{~T} \sin \theta \div 2 \mathrm{~T} \cos \theta= \\ & \quad(11.2+1.6) \div(11.2-1.6) \\ & \text { or }(\mathrm{T} \cos \theta+\mathrm{T} \sin \theta) \div(-\mathrm{T} \cos \theta+\mathrm{T} \sin \theta) \\ & =11.2 \div 1.6] \end{aligned}$	M1		For finding $\mathrm{T} \cos \theta$ and $\mathrm{T} \sin \theta$ and hence finding T or θ, OR for finding the value of $4 \mathrm{~T}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$ or of $2 \mathrm{~T} \sin \theta \div 2 \mathrm{~T} \cos \theta$ or of $(\mathrm{T} \cos \theta+\mathrm{T} \sin \theta) \div(-\mathrm{T} \cos \theta+\mathrm{T} \sin \theta)$
		$\mathrm{T}=8$ (or $\theta=53.1)$	A1		
		$\theta=53.1$ or $\mathrm{T}=8$	A1	[3]	
3 (i)			M1		For using $\mathrm{s}=\int \mathrm{vdt}$
		$\mathrm{s}=0.027\left(10 t^{3} / 3-t^{4} / 4\right) \quad(+\mathrm{C})$	A1		
		$\mathrm{s}=0.027[10000 / 3-10000 / 4]$	DM1		For finding the value of t at A and using limits or equivalent
		Distance is 22.5 m	A1	[4]	
	(ii)	[0.027(20t-3t $\left.\left.\left.{ }^{2}\right)=0 \rightarrow t=20 / 3\right]\right]$	M1		For using $\mathrm{d} v / \mathrm{d} t=0$
		$v_{\text {max }}=0.027(4000 / 9-8000 / 27)$	A1ft		ft incorrect t in $0.027\left(10 t^{2}-t^{3}\right)$
		Maximum speed is $4 \mathrm{~ms}^{-1}$	A1	[3]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	43

4 (i) [When $4<v<6, \quad a_{\text {ave }}=(6-4) /(0.5-0)$; when $19<v<21$ $\left.a_{\mathrm{ave}}=(21-19) /(24.5-16.3)\right]$

Average accelerations are
$4 \mathrm{~ms}^{-2}$ and $0.244 \mathrm{~ms}^{-2}$
(ii) $\mathrm{DF}(5)=\mathrm{P} / 5$ and $\mathrm{DF}(20)=\mathrm{P} / 20$
[$\mathrm{DF}-\mathrm{R}=\mathrm{ma}$]
$\mathrm{P} / 5-\mathrm{R}=1230 \times 4$ and
$\mathrm{P} / 20-\mathrm{R}=1230 \times 0.244$
$\mathrm{P}=30800 \quad$ (or $\mathrm{R}=1240$)
$\mathrm{R}=1240 \quad$ (or $\mathrm{P}=30800)$

For using $a \approx \frac{\Delta v}{\Delta t}$ M1

A1 [2]
B1
M1 For using Newton's $2^{\text {nd }}$ law
A1ft ft incorrect average a values

B1ft [5] ft P/5-1230a or P/20-1230a a_{2} or $5\left(1230 a_{1}+R\right)$ or $20\left(1230 a_{2}+R\right)$

5 (i) WD against resistance $=800 \times 500$
B1
[2800 $000=$ PE gain +400000$] \quad$ M1
$[2400000=16000 \mathrm{~g} \times 500 \sin \alpha]$
$\alpha=1.7$
A1 [4]
(ii) $\quad[\mathrm{KE}$ gain $=2400000+2400000-$ 800000]

4000000 J
A1ft
$\left[1 / 216000\left(\mathrm{v}^{2}-20^{2}\right)=4000000\right]$

Speed is $30 \mathrm{~ms}^{-1}$

For using PE gain $=\operatorname{mgLsin} \alpha$
For using WD by the driving force $=$ PE gain + WD against resistance

For using KE gain = WD by the driving force + PE loss - WD against resistance
ft PE gain
For KE gain $=1 / 2 \mathrm{~m}\left(v^{2}-20^{2}\right)$ and attempting to solve for v
A1 [4]

SR (max 2/4) for candidates who assume constant driving force and constant resistance without justification
Uses Newton's Second Law and $\left.v^{2}=u^{2}+2 a s\left[4800+16000 \operatorname{gsin} \alpha-1600=16000 \mathrm{a}, v^{2}=20^{2}+2 a \times 500\right)\right]$ M1 Speed is $30 \mathrm{~ms}^{-1}$ A1

Alternative Method for Part (i)

(i) Driving force $=2800000 \div 500$

B1
M1
[DF $-\mathrm{mg} \sin \alpha-\mathrm{R}=\mathrm{m} \times 0$]
DM1
$[16000 \times 10 \sin \alpha=5600-800]$
For solving the resultant equation for α $\alpha=1.7$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	43

6 (i)
M1 For resolving forces parallel to the plane
$\mathrm{F}=5.9-6.1 \sin \alpha$
A1
$\mathrm{R}=6.1 \cos \alpha$
B1
$[5.9-6.1 \sin \alpha \leq \mu(6.1 \cos \alpha)]$
M1
$\mu>\frac{4}{5}$
A1 [5] AG
(ii) $[6.1 \times(11 / 61)+5.9-\mu 6.1 \times(60 / 61)>0]$

M1 \quad For using $\mathrm{F}=\mu \mathrm{R}$ and 'net downward force >0,
$\mu<\frac{7}{6}$
A1 [2] AG
For using $\mathrm{F} \leq \mu R$

For using Newton's $2^{\text {nd }}$ law and $\mathrm{F}=\mu \mathrm{R}$ $0.61 \times 1.7]$ M1
$\mu=0.994$
A1 [2]
7 (i)
$[\mathrm{T}-0.12 \mathrm{~g}=0.12 \mathrm{a} \& 0.38 \mathrm{~g}-\mathrm{T}=0.38 \mathrm{a}$;
$a=\frac{0.38-0.12}{0.38+0.12} g$]
Acceleration is $5.2 \mathrm{~ms}^{-2}$
A1
[2]
(ii) $\left[\mathrm{v}^{2}=2 \times 5.2 \times 0.65 ; 0.65=1 / 25.2 \mathrm{~T}_{\mathrm{B}}{ }^{2}\right]$

M1 \quad For using $v^{2}=2 a$ h or $s=1 / 2 a t^{2}$
Speed of B is $2.6 \mathrm{~ms}^{-1}$ or $T_{B}=0.5$
A1ft ft incorrect a
$T_{B}=0.5$ or Speed of B is $2.6 \mathrm{~ms}^{-1}$
B1

M1
(iii) $[-2.6=2.6-10(\mathrm{~T}-0.5)]$
$\mathrm{T}=1.02$
A1ft
B1ft
[3]
(iv) $[0.65+0.5(1.02-0.5) 2.6]$

M1

Total distance is 1.326 m (accept 1.33)

A1 [2]

For using Newton's second law for A and B or for using $a=\frac{M-m}{M+m} g$

Correct graph for $0<t<1.02$
ft incorrect values of V, T and T_{B}

For using $-\mathrm{V}=\mathrm{V}-\mathrm{g}\left(\mathrm{T}-\mathrm{T}_{\mathrm{B}}\right)$ or equivalent
ft incorrect V and/or T_{B}

For using 'total distance

$$
=1 / 2\left(\mathrm{VT}_{\mathrm{B}}\right)+2 \times 1 / 2 \frac{T_{A}-T_{B}}{2} \mathrm{~V}
$$

