Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

1		M1		For using WD $=$ Fdcos α
	$\mathrm{F} \times 5 \cos 60^{\circ}=75$	A1		
	Magnitude of the force is 30 N	A1	[3]	
2	$[12=15 \sin \alpha]$	M1		For resolving forces in the direction of the force of magnitude 12 N
	$\alpha=53.1$	A1		
	[$\mathrm{F}=15 \cos \alpha]$	M1		For resolving forces in the direction of the force of magnitude F N
	$\mathrm{F}=9 \mathrm{~N}$	A1	[4]	
2	ALTERNATIVE 1			
	$\begin{aligned} & \text { [Fsin } \alpha=12 \cos \alpha \text { and } \mathrm{F} \cos \alpha+12 \sin \alpha \\ & =15 \rightarrow \sin \alpha \div \cos \alpha= \\ & 12 \cos \alpha \div 15-12 \sin \alpha \end{aligned}$	M1		For resolving forces in the x and y directions and eliminating F from the resultant equations
	$\begin{aligned} & 15 \sin \alpha-12 \sin ^{2} \alpha=12 \cos ^{2} \alpha \rightarrow 15 \sin \alpha \\ & =12 \rightarrow \alpha=53.1 \end{aligned}$	A1		
		M1		For substituting into Fsin $\alpha=12 \cos \alpha$ or $\mathrm{F} \cos \alpha+12 \sin \alpha=15$
	$\mathrm{F}=9 \mathrm{~N}$	A1	[4]	
2	ALTERNATIVE 2 [$\sin \alpha=12 / 15$]	M1		For using correct triangle of forces to find α
	$\alpha=53.1$	A1		
	[$\left.\mathrm{F}^{2}=15^{2}-12^{2}\right]$	M1		For using correct triangle of forces to find F
	$\mathrm{F}=9 \mathrm{~N}$	A1	[4]	
2	ALTERNATIVE 3			
	$\begin{aligned} {[12 \div \sin (180-\alpha)=15 \div} & \sin 90 \\ & \rightarrow 12=15 \sin \alpha] \end{aligned}$	M1		For using Lami's rule and $\sin \left(180^{\circ}-\alpha\right)=\sin \alpha$
	$\alpha=53.1$	A1		
	$[\mathrm{F} \div \sin 143.1=15 \div \sin 90]$	M1		For using Lami's rule and value of α to find F
	$\mathrm{F}=9 \mathrm{~N}$	A1	[4]	
SR (max 2/4) For candidates who have sin and cos interchanged.				
Allow B1 for $\alpha=36.9$ and allow B 1 for $\mathrm{F}=9$ following correct work relative to the \cos / sin interchange error.				

Page 5	Mark Scheme: Teachers' version	9709 syllabus	
	GCE AS/A LEVEL - May/June 2012	$\mathbf{m p e r}$	

3 (i)	$v=1.2 t^{5 / 3}+2$	M1		For an attempt to find $v(t)$ using integration of $a(t)$		
		A1				
		DM1		For attempting to solve $v(t)=3$ for $t^{5 / 3}$ or For confirming $v=3$ by substituting $t^{5 / 3}=5 / 6$ into the expression found for $v(t)$		
	$t^{5 / 3}=5 / 6$	A1	[4]	AG		
(ii)		M1		For integrating and using $\mathrm{s}(0)=0$ (may be implied by absence of +C) to find $\mathrm{s}(\mathrm{t})$		
	$\mathrm{s}=0.45 t^{8 / 3}+2 t$	A1				
	Distance is 2.13 m	A1	[3]			
4 (i)	Horizontal component is $\mathrm{T} \cos 25^{\circ}$ (0.906T)	M1		For resolving forces horizontally		
		A1				
		M1		For resolving forces vertically		
	Vertical component is $4 \mathrm{~g}+\mathrm{T} \sin 25^{\circ}$ $(40+0.423 T)$	A1	[4]			
(ii)		M1		For using F $=0.4 \mathrm{R}$		
	$0.906 \mathrm{~T}=16+0.169 \mathrm{~T}$	A1ft		May be implied by correct answer for T		
	$\mathrm{T}=21.7 \mathrm{~N}$	A1	[3]			
5 (i)	Tension in S_{1} is 30 N	B1				
	Tension in S_{2} is 50 N	B1	[2]			
(ii)		M1		For applying Newton's second law to A or to B		
	$3 \mathrm{~g}-\mathrm{T}-1.6=3 \mathrm{a}($ or $2 \mathrm{~g}+\mathrm{T}-4=2 \mathrm{a})$	A1				
	$\begin{aligned} & 2 \mathrm{~g}+\mathrm{T}-4=2 \mathrm{a}(\text { or } 3 \mathrm{~g}-\mathrm{T}-1.6=3 \mathrm{a}) \text { or } \\ & (3 \mathrm{~g}+2 \mathrm{~g})-(1.6+4)=(3+2) \mathrm{a} \end{aligned}$	B1				
	Acceleration is $8.88 \mathrm{~ms}^{-2}$	B1				
	Tension is 1.76 N		[5]			
SR (max. 1/2) for candidates who do not give numerical answers in (i). Allow B1 for Tension in S_{1} is 3 g and Tension in S_{2} is 5 g						

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

(i)	PE gain $=1250 \times 10 \times 400 \times 0.125$	B1		
	WD against resistance is $800 \times 400 \mathrm{~J}$	B1		
		M1		For using WD by car's engine = Gain in PE + WD against resistance
	WD by car's engine is $945000 \mathrm{~J}(945 \mathrm{~kJ})$	A1	[4]	
(ii)	$\left[v_{2} / 6=5 \times(1 / 3)\right]$	M1		$\begin{aligned} & \text { For using } \mathrm{P}=\mathrm{Fv} \rightarrow \\ & \frac{v_{2}}{v_{1}}=\frac{P_{2}}{P_{1}} \times \frac{F_{1}}{F_{2}} \end{aligned}$
	$v_{2}=10$	A1		
	KE gain $=1 / 21250\left(10^{2}-6^{2}\right)$	B1ft		
	[WD by car's engine $=945000+40000]$	M1		For using WD by car's engine $=($ Gain in $\mathrm{PE}+\mathrm{WD}$ against resistance) +KE gain
	WD by car's engine is $985000 \mathrm{~J}(985 \mathrm{~kJ}$)	A1ft	[5]	$\mathrm{ft} \mathrm{incorrect} \mathrm{ans(i)}$
Alternative scheme for part (i)				
(i)	$\mathrm{DF}=1250 \mathrm{~g} \times 0.125+800$	M1		For using Newton's second law with $\mathrm{a}=0$
		A1		
		M1		For using WD $=$ DF $\times 400$
	WD by car's engine is 94500 J (945 kJ)	A1	[4]	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

7 (i) $\quad[-0.12=0.15 a]$
M1 For using Newton's $2^{\text {nd }}$ law
$a=-0.8 \mathrm{~ms}^{-2}$
A1
$[v=3-0.8 \times 2] \quad$ M1
$v_{\text {approach }}=1.4$
A1
$\left[1 / 20.15\left(1.4^{2}-v_{\mathrm{r}}^{2}\right)\right]$
$v_{\text {return }}=-1$
A1

M1 \quad For using $0=v_{\text {return }}+a(t-2)$
$t=3.25 \mathrm{~s}$ when block comes to rest

For correct sketch
B1ft
[9]
Alternative for the M1 A1 immediately above.
$t_{\mathrm{YZ}}=1.25$
B1
$t=3.25 \mathrm{~s}$ when block is at rest
B1ft
(ii) $[\mathrm{XY}=1 / 2(3+1.4) \times 2, \mathrm{YZ}=1 / 21.25 \times 1] \quad \mathrm{M} 1$
$\mathrm{s}=4.4$ at Y and 3.775 at Z , stated or on
A1
ft incorrect values of v and t (although
] $v_{\text {return }}$ must be negative) graph

Curve starts at origin, s increases, slope decreases (convex upwards) for $0<t<2$, value of $s(2)$ shown

Curve starts at (2, 4.4), s decreases, magnitude of slope decreases to zero at (3.25, 3.775)

B1ft [4] ft incorrect values of s and t

