Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	41

1		M1		For using Newton's $2^{\text {nd }}$ law
	DF -700 $=880 \times 0.625$	A1		
	[$\mathrm{P}=1250 \times 16$]	M1		For using $\mathrm{P}=(\mathrm{DF}) \mathrm{v}$
	$\mathrm{P}=20000$	A1	[4]	
2 (i)	$\mathrm{X}=14-13 \cos \theta \text { and } \mathrm{Y}=13 \sin \theta \text { or triangle }$ with sides $13,14,15$ and θ opposite 15	B1		
	$\left[14^{2}+13^{2}-2 \times 13 \times 14 \cos \theta=15^{2}\right]$	M1		For using $\mathrm{X}^{2}+\mathrm{Y}^{2}=\mathrm{R}^{2}$ or cosine rule
	$\theta=67.4$	A1	[3]	
(ii)		M1		For evaluating X or $15 \cos \left[\tan ^{-1}(\mathrm{Y} / \mathrm{X})\right]$
	Component is 9 N	A1ft	[2]	
3 (i)	PE gain is 32000 J	B1	[1]	
(ii)	$\left[\mathrm{KE}\right.$ gain $\left.=1 / 2160 \times 1.25^{2}\right]$	M1		For using KE gain $=1 / 2 m v^{2}$
	KE gain is 125 J	A1	[2]	
(iii)	WD by drum $=32000+125+20000$	B1ft		
	[$\mathrm{P}=52125 \div 41.7]$	M1		For using $\mathrm{P}=\Delta(\mathrm{WD}) \div \Delta \mathrm{T}$
	Power is 1250 W	A1	[3]	
4 (i)	$\left[a=1.5 t-0.1875 t^{2}\right]$	M1		For using $a=\mathrm{d} v / \mathrm{d} t$
	$[0.1875 t(8-t)=0]$	DM1		For attempting to solve $\mathrm{d} v / \mathrm{d} t=0$
	Acceleration is zero when $t=8$	A1	[3]	
(ii)	Changes direction when $t=12$	B1		
		M1		For using $\mathrm{s}=\int \nu \mathrm{d} t$
	$s=0.25 t^{3}-0.0625 t^{4} \div 4 \quad(+\mathrm{C})$	A1		
	$[s=0.25 \times 1728-0.0625 \times 20736 \div 4]$	DM1		For using limits 0 to (12) or equivalent
	Distance is 108 m	A1	[5]	

9709 s12 ms	
us	Paper

5 (i) PE loss $=2 \mathrm{~g}(10-10 \times 0.28)$
$\left[1 / 22 v^{2}=144\right] \quad$ M1
Speed is $12 \mathrm{~ms}^{-1}$
(ii) $\mathrm{R}=2 \mathrm{~g} \times 0.96$
$[2 \mathrm{~g} \times 0.28-2 \mathrm{~g} \times 0.96 \div 12=2 a] \quad$ M1
Acceleration is $2 \mathrm{~ms}^{-1}$
A1 [3]
(iii) $\left[v^{2}=12^{2}+2 \times 2 \times 10\right]$

A1

For solving for T or for a
Tension is 3.84 N or acceleration is $1.6 \mathrm{~ms}^{-2}$
Acceleration is $1.6 \mathrm{~ms}^{-2}$ or tension is 3.84 N
A1
$0.6 \mathrm{~g} \times 0.8-\mathrm{T}=0.6 a$ and $\mathrm{T}-0.4 \mathrm{~g} \times 0.8=0.4 a$ or $(0.6-0.4) \mathrm{g} \times 0.8=(0.6+0.4) a$

A1
[5]
(ii) $2=1.6 t_{1}$
($t_{1}=1.25$)
B1ft
M1
$0=2-0.8 \mathrm{~g} t_{2}$
($t_{2}=0.25$)
A1
Time taken in 1.5 s
A1ft
[4] ft incorrect acceleration in (i)

9709 s12 ms_41

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

7 (i)

M1

A1

A1
$\left[0.6 \mathrm{~T}_{\mathrm{C}}+0.8\left(4 \mathrm{~T}_{\mathrm{C}} / 3\right)=8 \rightarrow(5 / 3) \mathrm{T}_{\mathrm{C}}=8\right.$ or $\left.0.6\left(0.75 \mathrm{~T}_{\mathrm{A}}\right)+0.8 \mathrm{~T}_{\mathrm{A}}=8 \rightarrow 1.25 \mathrm{~T}_{\mathrm{A}}=8\right]$

Tension in AB is 6.4 N ; tension in BC is 4.8 N
(ii)
$\mathrm{F}+0.2 \mathrm{~g}=\mathrm{T}_{\mathrm{A}} \times(1.5 / 2.5)$
$\mathrm{N}=\mathrm{T}_{\mathrm{A}} \times(2 / 2.5)$
$[\mu=(3.84-2) / 5.12]$

Coefficient is 0.359

M1
A1
B1
M1

A1
$\mathrm{T}_{\mathrm{C}} \times(2 / 2.5)-\mathrm{T}_{\mathrm{A}} \times(1.5 / 2.5)=0$

A1

For resolving forces vertically and horizontally at B

For eliminating T_{A} or T_{C} and attempting to find T_{C} or T_{A}

For resolving forces vertically

For using $\mu=\mathrm{F} / \mathrm{N}$ with F vertical and N horizontal
[5] Accept 0.36

