Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

1 EITHER: Use law of the logarithm of a power or quotient and remove logarithms M1
Obtain a 3-term quadratic equation $x^{2}-x-3=0$, or equivalent A1
Solve 3-term quadratic obtaining 1 or 2 roots M1
Obtain answer 2.30 only A1
OR1: Use an appropriate iterative formula, e.g. $x_{n+1}=\exp \left(\frac{1}{2} \ln \left(3 x_{n}+4\right)\right)-1$ correctly at least once

M1
Obtain answer 2.30 A1
Show sufficient iterations to at least 3 d.p. to justify 2.30 to 2 d.p., or show there is a sign change in the interval $(2.295,2.305)$

A1
Show there is no other root A1
OR2: Use calculated values to obtain at least one interval containing the root M1
Obtain answer 2.30 A1
Show sufficient calculations to justify 2.30 to 3 s.f., e.g. show it lies in $(2.295,2.305)$ A1
Show there is no other root

2 (i) Using the formulae $\frac{1}{2} r^{2} \theta$ and $\frac{1}{2} b h$, form an equation an a and $\theta \quad$ M1 Obtain given answer
(ii) Use the iterative formula correctly at least once

Obtain answer $\theta=1.32$
Show sufficient iterations to $4 \mathrm{~d} . \mathrm{p}$. to justify 1.32 to 2 d.p., or show there is a sign change in the interval $(1.315,1.325)$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	32

3 EITHER: State a correct unsimplified term in x or x^{2} of $(1-x)^{\frac{1}{2}}$ or $(1+x)^{-\frac{1}{2}}$
State correct unsimplified expansion of $(1-x)^{\frac{1}{2}}$ up to the term in x^{2}
State correct unsimplified expansion of $(1+x)^{-\frac{1}{2}}$ up to the term in $x^{2} \quad$ B1
Obtain sufficient terms of the product of the expansions of $(1-x)^{\frac{1}{2}}$ and $(1+x)^{-\frac{1}{2}} \quad$ M1
Obtain final answer $1-x+\frac{1}{2} x^{2}$
OR1: State that the given expression equals $(1-x)\left(1-x^{2}\right)^{-\frac{1}{2}}$ and state that the first term of the expansion of $\left(1-x^{2}\right)^{-\frac{1}{2}}$ is 1
State correct unsimplified term in x^{2} of $\left(1-x^{2}\right)^{-\frac{1}{2}}$
State correct unsimplified expansion of $\left(1-x^{2}\right)^{-\frac{1}{2}}$ up to the term in $x^{2} \quad$ B1
Obtain sufficient terms of the product of $(1-x)$ and the expansion M1
Obtain final answer $1-x+\frac{1}{2} x^{2}$
OR2: State correct unsimplified expansion of $(1+x)^{\frac{1}{2}}$ up to the term in x^{2}
Multiply expansion by $(1-x)$ and obtain $1-2 x+2 x^{2}$
Carry out correct method to obtain one non-constant term of the expansion of
$\left(1-2 x+2 x^{2}\right)^{\frac{1}{2}}$
Obtain a correct unsimplified expansion with sufficient terms A1
Obtain final answer $1-x+\frac{1}{2} x^{2}$
[Treat $(1+x)^{-1}\left(1-x^{2}\right)^{\frac{1}{2}}$ by the EITHER scheme.]
[Symbolic coefficients, e.g. $\binom{\frac{1}{2}}{2}$, are not sufficient for the B marks.]

4 Use trig formulae to express equation in terms of $\cos \theta$ and $\sin \theta \quad$ M1
Use Pythagoras to obtain an equation in $\sin \theta$ M1
Obtain 3-term quadratic $2 \sin ^{2} \theta-2 \sin \theta-1=0$, or equivalent A1
Solve a 3-term quadratic and obtain a value of θ M1
Obtain answer, e.g. 201.5 ${ }^{\circ}$ A1
Obtain second answer, e.g. 338.5°, and no others in the given interval
[Ignore answers outside the given interval. Treat answers in radians $(3.52,5.91)$ as a misread and deduct A 1 from the marks for the angles.]

5 Separate variables correctly and attempt integration of both sides
Obtain term $-\mathrm{e}^{-y}$, or equivalent B1
Obtain term $\frac{1}{2} \mathrm{e}^{2 x}$, or equivalent
Evaluate a constant, or use limits $x=0, y=0$ in a solution containing terms $a \mathrm{e}^{-y}$ and $b \mathrm{e}^{2 x}$
Obtain correct solution in any form, e.g. $-\mathrm{e}^{-y}=\frac{1}{2} \mathrm{e}^{2 x}-\frac{3}{2}$
Rearrange and obtain $y=\ln \left(2 /\left(3-\mathrm{e}^{2 x}\right)\right)$, or equivalent

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	32

6 (i) State derivative in any correct form, e.g. $3 \cos x-12 \cos ^{2} x \sin x$
Equate derivative to zero and solve for $\sin 2 x$, or $\sin x$ or $\cos x$

Obtain answer $x=\frac{5}{12} \pi$
Obtain answer $x=\frac{1}{2} \pi$ and no others in the given interval A1 ${ }^{\wedge}$
(ii) Carry out a method for determining the nature of the relevant stationary point

Obtain a maximum at $\frac{1}{12} \pi$ correctly
[Treat answers in degrees as a misread and deduct A1 from the marks for the angles.]

7 (i) EITHER: Multiply numerator and denominator by $1+3 \mathrm{i}$, or equivalent
Simplify numerator to $-5+5 \mathrm{i}$, or denominator to 10 , or equivalent A1
Obtain final answer $-\frac{1}{2}+\frac{1}{2} \mathrm{i}$, or equivalent
OR: \quad Obtain two equations in x and y, and solve for x or for y M1
Obtain $x=-\frac{1}{2}$ or $y=\frac{1}{2}$, or equivalent A1

Obtain final answer $-\frac{1}{2}+\frac{1}{2} \mathrm{i}$, or equivalent
A1
(ii) Show B and C in relatively correct positions in an Argand diagram

Show u in a relatively correct position B1 §
(iii) Substitute exact arguments in the LHS $\arg (1+2 i)-\arg (1-3 i)=\arg u$, or equivalent M1

Obtain and use $\arg u=\frac{3}{4} \pi$
Obtain the given result correctly

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

8 (i) State or imply $2 u \mathrm{~d} u=-\mathrm{d} x$, or equivalent B1
Substitute for x and $\mathrm{d} x$ throughout M1
Obtain integrand $\frac{-10 u}{6-u^{2}+u}$, or equivalent A1

Show correct working to justify the change in limits and obtain the given answer correctly
(ii) State or imply the form of fractions $\frac{A}{3-u}+\frac{B}{2+u}$ and use a relevant method to find A or B
Obtain $A=6$ and $B=-4$
Integrate and obtain $-6 \ln (3-u)-4 \ln (2+u)$, or equivalent
Substitute limits correctly in an integral of the form $a \ln (3-u)+b \ln (2+u)$
Obtain the given answer correctly having shown sufficient working
[The f.t. is on A and B.]

9 (i) Use correct product rule
Obtain derivative in any correct form, e.g. $\frac{\ln x}{2 \sqrt{x}}+\frac{\sqrt{x}}{x}$
Carry out a complete method to form an equation of the tangent at $x=1$
Obtain answer $y=x-1$
(ii) State or imply that the indefinite integral for the volume is $\pi \int x(\ln x)^{2} \mathrm{~d} x$ Integrate by parts and reach $a x^{2}(\ln x)^{2}+b \int x^{2} \cdot \frac{\ln x}{x} \mathrm{~d} x$
Obtain $\frac{1}{2} x^{2}(\ln x)^{2}-\int x \ln x \mathrm{~d} x$, or unsimplified equivalent
Attempt second integration by parts reaching $c x^{2} \ln x+d \int x^{2} \cdot \frac{1}{x} \mathrm{~d} x$
Complete the integration correctly, obtaining $\frac{1}{2} x^{2}(\ln x)^{2}-\frac{1}{2} x^{2} \ln x+\frac{1}{4} x^{2}$
Substitute limits $x=1$ and $x=\mathrm{e}$, having integrated twice
Obtain answer $\frac{1}{4} \pi\left(\mathrm{e}^{2}-1\right)$, or exact equivalent
[If π omitted, or 2π or $\pi / 2$ used, give B0 and then follow through.]
[Integration using parts $x \ln x$ and $\ln x$ is also viable.]

Page 8		Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

10 (i) EITHER: Substitute coordinates of a general point of l in given equation of plane m M1
Obtain equation in λ in any correct form A1
Verify that the equation is not satisfied for any value of λ A1
OR1: \quad Substitute for \mathbf{r} in the vector equation of plane m and expand scalar product M1
Obtain equation in λ in any correct form A1
Verify that the equation is not satisfied for any value of λ A1
OR2: \quad Expand scalar product of a normal to m and a direction vector of l M1
Verify scalar product is zero A1
Verify that one point of l does not lie in the plane A1
OR3: Use correct method to find perpendicular distance of a general point of l from m M1
Obtain a correct unsimplified expression in terms of λ A1
Show that the perpendicular distance is $4 / 3$, or equivalent, for all λ A1
OR4: Use correct method to find the perpendicular distance of a particular point of l from m M1
Obtain answer $4 / 3$, or equivalent A1
Show that the perpendicular distance of a second point is also $4 / 3$, or equivalent A1
(ii) EITHER: Express general point of l in component form, e.g. $(1+2 \lambda, 1+\lambda,-1+2 \lambda) \quad \mathrm{B} 1$
Substitute in given equation of n and solve for λM1
Obtain position vector $5 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}$ from $\lambda=2$ A1
OR: \quad State or imply plane n has vector equation $\mathbf{r} .(2 \mathbf{i}-2 \mathbf{j}+\mathbf{k})=7$, or equivalent B1
Substitute for \mathbf{r}, expand scalar product and solve for λ M1
Obtain position vector $5 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}$ from $\lambda=2$ A1
(iii) Form an equation in λ by equating perpendicular distances of a general point of l from m and n
Solve for λ and obtain a point, e.g. $7 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$ from $\lambda=3$
Obtain a second point, e.g. $3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ from $\lambda=1$
Use a correct method to find the distance between the two points
Obtain answer 6
[The f.t. is on the components of l.]

