		970		_
P	Page 4		Paper	r
		GCE AS/A LEVEL – May/June 2012 9709	32	
El	ITHER	Use law of the logarithm of a power or quotient and remove logarithms	M1	
		Obtain a 3-term quadratic equation $x^2 - x - 3 = 0$, or equivalent	A1	
		Solve 3-term quadratic obtaining 1 or 2 roots	M1	
		Obtain answer 2.30 only	A1	
0	<i>R</i> 1:	Use an appropriate iterative formula, e.g. $x_{n+1} = \exp\left(\frac{1}{2}\ln(3x_n + 4)\right) - 1$ correctly	' at	
		least once	M1	
		Obtain answer 2.30	A1	
		Show sufficient iterations to at least 3 d.p. to justify 2.30 to 2 d.p., or show there	is a	
		sign change in the interval (2.295, 2.305)	A1	
		Show there is no other root	A1	
O	R2:	Use calculated values to obtain at least one interval containing the root	M1	
		Obtain answer 2.30	A1	
		Show sufficient calculations to justify 2.30 to 3 s.f., e.g. show it lies in (2.295, 2.		-
		Show there is no other root	A1	[4
(i)) Usir	ing the formulae $\frac{1}{2}r^2\theta$ and $\frac{1}{2}bh$, form an equation an <i>a</i> and θ	M1	
		ain given answer	A1	[2
(ii	i) Use	the iterative formula correctly at least once	M1	
	,	ain answer $\theta = 1.32$	A1	
		w sufficient iterations to 4 d.p. to justify 1.32 to 2 d.p., or show there is a sign chance interval (1.315, 1.325)	inge Al	[

<u> </u>	Page 5		labus Pap	
Ĺ		GCE AS/A LEVEL – May/June 2012 97	709 32	2
3	EITHER: S	State a correct unsimplified term in x or x^2 of $(1-x)^{\frac{1}{2}}$ or $(1+x)^{-\frac{1}{2}}$	В	1
	ç	State correct unsimplified expansion of $(1-x)^{\frac{1}{2}}$ up to the term in x^2	В	1
	5	State correct unsimplified expansion of $(1+x)^{-\frac{1}{2}}$ up to the term in x^2	В	1
	(Obtain sufficient terms of the product of the expansions of $(1-x)^{\frac{1}{2}}$ and ($(1+x)^{-\frac{1}{2}}$ M	1
	(Obtain final answer $1 - x + \frac{1}{2}x^2$	А	1
	<i>OR</i> 1: 5	State that the given expression equals $(1-x)(1-x^2)^{-\frac{1}{2}}$ and state that the	first term of	
	t	the expansion of $(1-x^2)^{-\frac{1}{2}}$ is 1	В	1
	S	State correct unsimplified term in x^2 of $(1 - x^2)^{-\frac{1}{2}}$	В	1
		State correct unsimplified expansion of $(1 - x^2)^{-\frac{1}{2}}$ up to the term in x^2	В	1
		Obtain sufficient terms of the product of $(1 - x)$ and the expansion	М	1
	(Obtain final answer $1 - x + \frac{1}{2}x^2$	А	1
	OR2: 5	State correct unsimplified expansion of $(1 + x)^{\frac{1}{2}}$ up to the term in x^{2}	В	1
		Multiply expansion by $(1 - x)$ and obtain $1 - 2x + 2x^2$ Carry out correct method to obtain one non-constant term of the expansion	B on of	1
		$(1-2x+2x^2)^{\frac{1}{2}}$	М	1
		Obtain a correct unsimplified expansion with sufficient terms	A	1
	(Obtain final answer $1 - x + \frac{1}{2}x^2$	А	1 [5]
		[Treat $(1+x)^{-1}(1-x^2)^{\frac{1}{2}}$ by the <i>EITHER</i> scheme.]		
	[[Symbolic coefficients, e.g. $\begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}$, are not sufficient for the B marks.]		
4	Use trig fo	formulae to express equation in terms of $\cos \theta$ and $\sin \theta$	М	1
	-	goras to obtain an equation in $\sin \theta$	М	
		term quadratic $2\sin^2 \theta - 2\sin \theta - 1 = 0$, or equivalent term quadratic and obtain a value of θ	A M	
		swer, e.g. 201.5°	A	
	[Ignore an	cond answer, e.g. 338.5°, and no others in the given interval aswers outside the given interval. Treat answers in radians (3.52, 5.91) as at A1 from the marks for the angles.]	A s a misread	1 [6]
5	Senarate	variables correctly and attempt integration of both sides	В	1
5	-	$m - e^{-y}$, or equivalent	B	
		m $\frac{1}{2}e^{2x}$, or equivalent	В	1
		a constant, or use limits $x = 0$, $y = 0$ in a solution containing terms $ae^{-y}a$	and be^{2x} M	1
	Obtain con	rrect solution in any form, e.g. $-e^{-y} = \frac{1}{2}e^{2x} - \frac{3}{2}$	А	1

D -		Mark Cahama, Taashara' warsian)9_ <u>s12_m</u>	
Pa	age 6	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012	9709	32	
(i)		ivative in any correct form, e.g. $3\cos x - 12\cos^2 x \sin x$ erivative to zero and solve for sin 2x, or sin x or cos x		B1 + B1 M1	
	-	nswer $x = \frac{1}{12}\pi$		A1	
	Obtain a	nswer $x = \frac{5}{12}\pi$		A1	
	Obtain a	nswer $x = \frac{1}{2}\pi$ and no others in the given interval		A1√ ^k	[6]
(ii)	•	t a method for determining the nature of the relevant stationar	y point	M1	
	Obtain a	maximum at $\frac{1}{12}\pi$ correctly		A1	[2]
		nswers in degrees as a misread and deduct A1 from the marks	for the angles.]		
(i)	EITHER	: Multiply numerator and denominator by $1 + 3i$, or equivalent Simplify numerator to $-5 + 5i$, or denominator to 10, or equiv		M1 A1	
		Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent		A1	
	OR:	Obtain two equations in x and y , and solve for x or for y		M1	
		Obtain $x = -\frac{1}{2}$ or $y = \frac{1}{2}$, or equivalent		A1	
		Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent		A1	[3]
(ii)		and C in relatively correct positions in an Argand diagram in a relatively correct position		B1 B1√ [≜]	[2]
(iii)) Substitut	the exact arguments in the LHS $arg(1 + 2i) - arg(1 - 3i) = arg i$	<i>i</i> , or equivalent	M1	
		nd use $\arg u = \frac{3}{4}\pi$		A1	
		e given result correctly		A1	[3]
	5 6 6 6 6 6 6 6				L91

F	Pag	e 7	Mark Scheme: Teachers' version	Syllabus	_s12_ms Paper	_
			GCE AS/A LEVEL – May/June 2012	9709	32	
8 (i	S	Substitute	mply $2u du = -dx$, or equivalent e for x and dx throughout		B1 M1	
	(Obtain in	tegrand $\frac{-10u}{6-u^2+u}$, or equivalent		A1	
		Show concorrectly	rrect working to justify the change in limits and obtain	n the given answe	er A1	[4
(i	i) S	State or i	mply the form of fractions $\frac{A}{3-u} + \frac{B}{2+u}$ and use a releva	nt method to find	A	
	C	or B			M1	
			= 6 and B = -4		A1	
		-	and obtain $-6\ln(3-u) - 4\ln(2+u)$, or equivalent		^++A1√	
			e limits correctly in an integral of the form $a \ln(3-u) + b \ln(1-u)$	(2+u)	M1	
			e given answer correctly having shown sufficient working s on A and B.]		A1	[
(i	·		ct product rule		M1	
	(Obtain de	rivative in any correct form, e.g. $\frac{\ln x}{2\sqrt{x}} + \frac{\sqrt{x}}{x}$		A1	
	(Carry out	a complete method to form an equation of the tangent at $x =$ swer $y = x - 1$	= 1	M1 A1	[•
(i	i) S	State or ir	nply that the indefinite integral for the volume is $\pi \int x(\ln x)$	2 dx	B1	
	Ι	Integrate	by parts and reach $ax^2(\ln x)^2 + b\int x^2 \cdot \frac{\ln x}{x} dx$		M1*	
	(Obtain $\frac{1}{2}$	$x^{2}(\ln x)^{2} - \int x \ln x dx$, or unsimplified equivalent		A1	
	I	Attempt s	econd integration by parts reaching $cx^2 \ln x + d \int x^2 \cdot \frac{1}{x} dx$	Μ	[1(dep*)	
	(Complete	the integration correctly, obtaining $\frac{1}{2}x^2(\ln x)^2 - \frac{1}{2}x^2\ln x +$	$\frac{1}{4}x^2$	A1	
	S	Substitute	e limits $x = 1$ and $x = e$, having integrated twice	Μ	[1(dep*)	
	(Obtain an	swer $\frac{1}{4}\pi(e^2-1)$, or exact equivalent		A1	[
		-	ted, or 2π or $\pi/2$ used, give B0 and then follow through.] on using parts x ln x and ln x is also viable.]			

[Integration using parts $x \ln x$ and $\ln x$ is also viable.]

Page 8		3	Mark Scheme: Teachers' version Syllabus	Paper	r
	- J		GCE AS/A LEVEL – May/June 2012 9709	32	
6	• EIT			M1	
(1	i) <i>EIT</i>	HER:	Substitute coordinates of a general point of l in given equation of plane m	M1	
			Obtain equation in λ in any correct form	A1	
		1	Verify that the equation is not satisfied for any value of λ	A1	
	OR	1:	Substitute for \mathbf{r} in the vector equation of plane m and expand scalar produce		
			Obtain equation in λ in any correct form	A1	
		•	Verify that the equation is not satisfied for any value of λ	A1	
	OR	2:	Expand scalar product of a normal to m and a direction vector of l	M1	
			Verify scalar product is zero	A1	
	00	2.	Verify that one point of l does not lie in the plane	A1	
	OR:	5:	Use correct method to find perpendicular distance of a general point of <i>l</i>	M 1	
			from <i>m</i>	M1	
			Obtain a correct unsimplified expression in terms of λ	A1	
		4.	Show that the perpendicular distance is $4/3$, or equivalent, for all λ	A1	
	OR4	4:	Use correct method to find the perpendicular distance of a particular point		
			from m	M1	
			Obtain answer 4/3, or equivalent Show that the perpendicular distance of a second point is also 4/3, or	A1	
			equivalent	A1	
			equivalent	AI	
6	ii) <i>EIT</i>	HER:	Express general point of <i>l</i> in component form, e.g. $(1 + 2\lambda, 1 + \lambda, -1 + 2\lambda)$) B1	
(·			Substitute in given equation of <i>n</i> and solve for λ	M1	
			Obtain position vector $5\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$ from $\lambda = 2$	Al	
	OR:	•	State or imply plane <i>n</i> has vector equation $\mathbf{r} \cdot (2\mathbf{i} - 2\mathbf{j} + \mathbf{k}) = 7$, or equivalen		
		-	Substitute for r , expand scalar product and solve for λ	M1	
			Obtain position vector $5\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$ from $\lambda = 2$	Al	
			1 0		
(1			quation in λ by equating perpendicular distances of a general point of l from		
	and			M1*	
			orrect modular or non-modular equation in λ in any form	A1√	
			λ and obtain a point, e.g. $7\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ from $\lambda = 3$	A1	
			econd point, e.g. $3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ from $\lambda = 1$	A1	
			ect method to find the distance between the two points	M1(dep*)	
		ain ans	swer 6 s on the components of <i>l</i> .]	A1	