Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	31

1 State or imply $4-2^{x}=-10$ and 10
Use correct method for solving equation of form $2^{x}=a$
Obtain 3.81

2

Obtain 5

3 (i) Substitute $x=2$ and equate to zero, or divide by $x-2$ and equate constant remainder to zero, or equivalent
Obtain $a=4$
(ii) (a) Find further (quadratic or linear) factor by division, inspection or factor theorem or equivalent
Obtain $x^{2}+2 x-8$ or $x+4$
State $(x-2)^{2}(x+4)$ or equivalent
(b) State any two of the four (or six) roots

State all roots $(\pm \sqrt{2}, \pm 2 \mathrm{i})$, provided two are purely imaginary
B1 ${ }^{\wedge}$

4
(i) Either Expand $(1+2 \mathrm{i})^{2}$ to obtain $-3+4 \mathrm{i}$ or unsimplified equivalent

Multiply numerator and denominator by $2-\mathrm{i}$
Obtain correct numerator $-2+11$ i or correct denominator 5
Obtain $-\frac{2}{5}+\frac{11}{5} \mathrm{i}$ or equivalent
Or Expand $(1+2 \mathrm{i})^{2}$ to obtain $-3+4 \mathrm{i}$ or unsimplified equivalent
Obtain two equations in x and y and solve for x or y
Obtain final answer $x=-\frac{2}{5}$
Obtain final answer $y=\frac{11}{5}$
(ii) Draw a circle

Show centre at relatively correct position, following their u
Draw circle passing through the origin

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	31

5 (i) Differentiate to obtain $4 \cos \frac{1}{2} x-\frac{1}{2} \sec ^{2} \frac{1}{2} x$
Equate to zero and find value of $\cos \frac{1}{2} x$
Obtain $\cos \frac{1}{2} x=\frac{1}{2}$ and confirm $\alpha=\frac{2}{3} \pi$
A1
(ii) Integrate to obtain $-16 \cos \frac{1}{2} x \ldots$
$\ldots+2 \ln \cos \frac{1}{2} x$ or equivalent
Using limits 0 and $\frac{2}{3} \pi$ in $a \cos \frac{1}{2} x+b \ln \cos \frac{1}{2} x$
Obtain $8+2 \ln \frac{1}{2}$ or exact equivalent

6 (i) Obtain $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{2}
Obtain $-4 y-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $-4 x y$
Substitute $x=2$ and $y=-3$ and find value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(dependent on at least one B1 being earned and $\frac{d(45)}{d x}=0$)
Obtain $\frac{12}{7}$ or equivalent
(ii) Substitute $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ in an expression involving $\frac{\mathrm{d} y}{\mathrm{~d} x}, x$ and y and obtain $a y=b x$

Obtain $y=x$ or equivalent
Uses $y=x$ in original equation and demonstrate contradiction

7 Separate variables correctly and attempt integration on at least one side
Obtain $\frac{1}{3} y^{3}$ or equivalent on left-hand side
Use integration by parts on right-hand side (as far as axe ${ }^{3 x}+\int b \mathrm{e}^{3 x} \mathrm{~d} x$)
Obtain or imply $2 x \mathrm{e}^{3 x}+\int 2 \mathrm{e}^{3 x} \mathrm{~d} x$ or equivalent
Obtain $2 x \mathrm{e}^{3 x}-\frac{2}{3} \mathrm{e}^{3 x}$
Substitute $x=0, y=2$ in an expression containing terms $A y^{3}, \mathrm{Bx}^{3 x}, \mathrm{Ce}^{3 x}$, where $\mathrm{ABC} \neq 0$, and find the value of c
Obtain $\frac{1}{3} y^{3}=2 x \mathrm{e}^{3 x}-\frac{2}{3} \mathrm{e}^{3 x}+\frac{10}{3}$ or equivalent
Substitute $x=0.5$ to obtain $y=2.44$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	31

8 (i) Either Obtain $\pm\left(\begin{array}{c}2 \\ -1 \\ -15\end{array}\right)$ for vector $P A$ (where A is point on line) or equivalent
Use scalar product to find cosine of angle between $P A$ and line
Obtain $\frac{42}{\sqrt{14 \times 230}}$ or equivalent
Use trigonometry to obtain $\sqrt{104}$ or 10.2 or equivalent
Obtain $\pm\left(\begin{array}{c}2 n+2 \\ n-1 \\ 3 n-15\end{array}\right)$ for $P N$ (where N is foot of perpendicular)
Equate scalar product of $P N$ and line direction to zero
Or equate derivative of $P N^{2}$ to zero
Or use Pythagoras' theorem in triangle $P N A$ to form equation in n
Solve equation and obtain $n=3$
Obtain $\sqrt{104}$ or 10.2 or equivalent
Obtain $\pm\left(\begin{array}{c}2 \\ -1 \\ -15\end{array}\right)$ for vector $P A$ (where A is point on line)
Evaluate vector product of $P A$ and line direction
Obtain $\pm\left(\begin{array}{c}12 \\ -36 \\ -4\end{array}\right)$
Divide modulus of this by modulus of line direction and obtain $\sqrt{104}$ or 10.2 or equivalent
Or 3 Obtain $\pm\left(\begin{array}{c}2 \\ -1 \\ -15\end{array}\right)$ for vector $P A$ (where A is point on line)
Evaluate scalar product of $P A$ and line direction to obtain distance $A N$
Obtain $3 \sqrt{14}$ or equivalent
Use Pythagoras' theorem in triangle PNA and obtain $\sqrt{104}$ or 10.2 or equivalent
Or 4 Obtain $\pm\left(\begin{array}{c}2 \\ -1 \\ -15\end{array}\right)$ for vector $P A$ (where A is point on line)
Use a second point B on line and use cosine rule in triangle $A B P$ to find angle A or angle B or use vector product to find area of triangle
Obtain correct answer (angle $A=42.25 \ldots$)
Use trigonometry to obtain $\sqrt{104}$ or 10.2 or equivalent
(ii) Either Use scalar product to obtain a relevant equation in a, b, c, e.g. $2 a+b+3 c=0$ or

$$
2 a-b-15 c=0
$$

State two correct equations in a, b and c
Solve simultaneous equations to obtain one ratio
Obtain $a: b: c=-3: 9:-1$ or equivalent
Obtain equation $-3 x+9 y-z=28$ or equivalent
Or 1 Calculate vector product of two of $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ -15\end{array}\right)$ and $\left(\begin{array}{c}8 \\ 2 \\ -6\end{array}\right)$ or equiv
Obtain two correct components of the product
Obtain correct $\left(\begin{array}{c}-3 \\ 9 \\ -1\end{array}\right)$ or equivalent
Substitute in $-3 x+9 y-z=d$ to find d or equivalent
Obtain equation $-3 x+9 y-z=28$ or equivalent A1
Or 2 Form a two-parameter equation of the plane M1
Obtain $\mathbf{r}=\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)+s\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)+t\left(\begin{array}{c}2 \\ -1 \\ -15\end{array}\right)$ or equivalent
State three equations in x, y, z, s, t
Eliminate s and t
Obtain equation $3 x-9 y+z=-28$ or equivalent
A1

9 State or imply form $A+\frac{B}{2 x+1}+\frac{C}{x+2}$
State or obtain $A=2$
Use correct method for finding B or C
Obtain $B=1$
Obtain $C=-3$
Obtain $2 x+\frac{1}{2} \ln (2 x+1)-3 \ln (x+2)$ [Deduct B1 \downarrow for each error or omission] B3 ${ }^{\wedge}$

Substitute limits in expression containing $a \ln (2 x+1)+b \ln (x+2)$
Show full and exact working to confirm that $8+\frac{1}{2} \ln 9-3 \ln 6+3 \ln 2$, or an equivalent expression, simplifies to given result $8-\ln 9$
[SR: If A omitted from the form of fractions, give B 0 B 0 M 1 A 0 A 0 in $(\mathbf{i}) ; \mathrm{B} 0 \sqrt{ } \mathrm{~B} 1 \sqrt{ } \mathrm{~B} 1 \curvearrowright \mathrm{M} 1 \mathrm{~A} 0$ in (ii).]
[SR:For a solution starting with $\frac{M}{2 x+1}+\frac{N x}{x+2}$ or $\frac{P x}{2 x+1}+\frac{Q}{x+2}$, give B0B0M1A0A0 in (i); $\mathrm{B} 1 \sqrt{ } 1 \sqrt{ } 1 \sqrt{ }$, if recover correct form, M1A0 in (ii).]
[SR:For a solution starting with $\frac{B}{2 x+1}+\frac{D x+E}{x+2}$, give M1A1 for one of $B=1, D=2, E=1$ and A 1 for the other two constants; then give B 1 B 1 for $A=2, C=-3$.]
[SR:For a solution starting with $\frac{F x+G}{2 x+1}+\frac{C}{x+2}$, give M1A1 for one of $C=-3, F=4, G=3$ and A 1 for the other constants or constant; then give B 1 B 1 for $A=2, B=1$.]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{3 1}$

10 (i) Use correct identity for $\tan 2 x$ and obtains $a t^{4}+b t^{3}+c t^{2}+d t=0$, where b may be zero M1
Obtain correct horizontal equation, e.g. $4 t+5 t^{2}-5 t^{4}=0 \quad \mathrm{~A} 1$
Obtain $k t\left(t^{3}+e t+f\right)=0$ or equivalent M1
Confirm given results $t=0$ and $t=\sqrt[3]{t+0.8} \quad$ A1
(ii) Consider sign of $t-\sqrt[3]{t+0.8}$ at 1.2 and 1.3 or equivalent M1

Justify the given statement with correct calculations (-0.06 and 0.02) A1
(iii) Use the iterative formula correctly at least once with $1.2<t_{n}<1.3$

Obtain final answer 1.276
Show sufficient iterations to justify answer or show there is a change of sign in interval (1.2755, 1.2765)
(iv) Evaluate $\tan ^{-1}$ (answer from part (iiii) to obtain at least one value

Obtain -2.24 and 0.906
State $-\pi, 0$ and π
[SR If A0, B0, allow B1 for any 3 roots]

