			9709			<u>s 3</u> 1
	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2012	9709	31	
1	Use	State or imply $4-2^x = -10$ and 10 Use correct method for solving equation of form $2^x = a$ Obtain 3.81		B1 M1 A1	[3]	
2	(i)	<u>Either</u> <u>Or</u>	Obtain correct (unsimplified) version of x or x^2 term from (Obtain $1 + 2x$ Obtain $+ 6x^2$ Differentiate and evaluate f(0) and f'(0) where f'(x) = $k(1-4)$ Obtain $1 + 2x$ Obtain $1 + 2x$ Obtain $+ 6x^2$		M1 A1 A1 M1 A1 A1	[3]
	(ii)	Combin Obtain :	e both x^2 terms from product of $1 + 2x$ and answer from part (i)	M1 A1	[2]
3	(i)		te $x = 2$ and equate to zero, or divide by $x - 2$ and equate consequivalent q = 4	stant remainder to	M1 A1	[2]
	(ii)	equ Ob	d further (quadratic or linear) factor by division, inspection of ivalent tain $x^2 + 2x - 8$ or $x + 4$ te $(x - 2)^2(x + 4)$ or equivalent	r factor theorem or	M1 A1 A1	[3]
		• •	te any two of the four (or six) roots te all roots ($\pm\sqrt{2}$, $\pm2i$), provided two are purely imaginary		B1√ B1√	[2]
4	(i)	<u>Either</u>	Expand $(1 + 2i)^2$ to obtain $-3 + 4i$ or unsimplified equivalent Multiply numerator and denominator by $2 - i$ Obtain correct numerator $-2 + 11i$ or correct denominator 5	ıt	B1 M1 A1	
		<u>Or</u>	Obtain $-\frac{2}{5} + \frac{11}{5}i$ or equivalent Expand $(1 + 2i)^2$ to obtain $-3 + 4i$ or unsimplified equivalent Obtain two equations in x and y and solve for x or y Obtain final answer $x = -\frac{2}{5}$	ıt	A1 B1 M1 A1	
			5 Obtain final answer $y = \frac{11}{5}$		A1	[4]
	(ii)		circle entre at relatively correct position, following their <i>u</i> rcle passing through the origin		M1 A1√ [≜] A1	[3]

Pa		age 5 Mark Scheme: Teachers' version Syl		s12_ms Paper		
			GCE AS/A LEVEL – May/June 2012 9709	31		
5	(i)	Different	iate to obtain $4\cos\frac{1}{2}x - \frac{1}{2}\sec^2\frac{1}{2}x$	B1		
		Equate to	zero and find value of $\cos \frac{1}{2}x$	M1		
		Obtain co	$\cos \frac{1}{2}x = \frac{1}{2}$ and confirm $\alpha = \frac{2}{3}\pi$	A1	[3]	
	(ii)	Integrate	to obtain $-16\cos\frac{1}{2}x\dots$	B1		
		$\dots + 2 \ln \theta$	$\cos\frac{1}{2}x$ or equivalent	B1		
		Using lim	hits 0 and $\frac{2}{3}\pi$ in $a\cos\frac{1}{2}x + b\ln\cos\frac{1}{2}x$	M1		
		Obtain 8	$+2\ln\frac{1}{2}$ or exact equivalent	A1	[4]	
6	(i)	Obtain 2	$y \frac{dy}{dr}$ as derivative of y^2	B1		
			$4y - 4x \frac{dy}{dx}$ as derivative of $-4xy$	B1		
			dx e x = 2 and y = -3 and find value of $\frac{dy}{dx}$			
			nt on at least one B1 being earned and $\frac{d(45)}{dx} = 0$)	M1		
		Obtain $\frac{12}{7}$	$\frac{2}{7}$ or equivalent	A1	[4]	
	(ii)	Substitute	$\frac{dy}{dx} = 1$ in an expression involving $\frac{dy}{dx}$, x and y and obtain $ay = bx$	M1		
			= x or equivalent x in original equation and demonstrate contradiction	A1 A1	[3]	
7	Sep	arate varia	bles correctly and attempt integration on at least one side	M1		
	Obt	$ain \frac{1}{3}y^3$ o	r equivalent on left-hand side	A1		
	Use	integration	n by parts on right-hand side (as far as $axe^{3x} + \int be^{3x} dx$)	M1		
	Obt	ain or imp	ly $2xe^{3x} + \int 2e^{3x} dx$ or equivalent	A1		
	Obt	ain $2xe^{3x}$	$-\frac{2}{3}e^{3x}$	A1		
		stitute $x =$ the value	0, $y = 2$ in an expression containing terms Ay^3 , Bxe^{3x} , Ce^{3x} , where ABC $\neq 0$, and of c	M1		
	Obt	$ain \frac{1}{3}y^3 =$	$2xe^{3x} - \frac{2}{3}e^{3x} + \frac{10}{3}$ or equivalent	A1		
	C1-	stitute $r =$	0.5 to obtain $y = 2.44$	A1	[8]	

	Page 6	Mark Scheme: Teachers' version Syllabus	Paper	s_3. •
		GCE AS/A LEVEL – May/June 2012 9709	31	
8	(i) <u>Either</u>	Obtain $\pm \begin{pmatrix} 2 \\ -1 \\ -15 \end{pmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line) or equivalent	B1	
		(-13) Use scalar product to find cosine of angle between <i>PA</i> and line	M1	
		Obtain $\frac{42}{\sqrt{14 \times 230}}$ or equivalent	A1	
		Use trigonometry to obtain $\sqrt{104}$ or 10.2 or equivalent $(2n+2)$	A1	
	<u>Or 1</u>	Obtain $\pm \begin{pmatrix} 2n+2\\ n-1\\ 3n-15 \end{pmatrix}$ for <i>PN</i> (where <i>N</i> is foot of perpendicular)	B1	
		Equate scalar product of PN and line direction to zero		
		<u>Or</u> equate derivative of PN^2 to zero		
		<u>Or</u> use Pythagoras' theorem in triangle <i>PNA</i> to form equation in <i>n</i> Solve equation and obtain $n = 3$	M1 A1	
		Obtain $\sqrt{104}$ or 10.2 or equivalent	A1	
		$\begin{pmatrix} 2 \end{pmatrix}$	711	
	<u>Or 2</u>	Obtain $\pm \begin{pmatrix} 2 \\ -1 \\ -15 \end{pmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line)	B1	
		Evaluate vector product of PA and line direction	M1	
		Obtain $\pm \begin{pmatrix} 12 \\ -36 \\ -4 \end{pmatrix}$	A1	
		Divide modulus of this by modulus of line direction and obtain $\sqrt{104}$ or 10.2 or		
		equivalent	A1	
	<u>Or 3</u>	Obtain $\pm \begin{pmatrix} 2 \\ -1 \\ -15 \end{pmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line)	B1	
		Evaluate scalar product of PA and line direction to obtain distance AN	M1	
	Or 1ObtainOr 1ObtainEquate Or equa Or use i Solve e ObtainOr 2ObtainOr 2ObtainOr 2ObtainOtainEvaluat ObtainOr 3ObtainOr 3ObtainOr 3ObtainOr 4ObtainUse a sor angle	Obtain $3\sqrt{14}$ or equivalent	A1	
		Use Pythagoras' theorem in triangle <i>PNA</i> and obtain $\sqrt{104}$ or 10.2 or		
		equivalent	A1	
	<u>Or 4</u>	Obtain $\pm \begin{pmatrix} 2 \\ -1 \\ -15 \end{pmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line)	B1	
		Use a second point <i>B</i> on line and use cosine rule in triangle <i>ABP</i> to find angle <i>A</i>		
		or angle <i>B</i> or use vector product to find area of triangle	M1	
		Obtain correct answer (angle $A = 42.25$)	A1	
		Use trigonometry to obtain $\sqrt{104}$ or 10.2 or equivalent	A1	[4]

9709 s12 ms 31

Page 7	Mark Scheme: Teachers' version Syllabus	s12 m Pape	
	GCE AS/A LEVEL – May/June 2012 9709	31	
(ii) <u>Either</u>	Use scalar product to obtain a relevant equation in a, b, c, e.g. $2a + b + 3c = 0$ o	r	
(ii) <u>Entiter</u>	2a - b - 15c = 0	M1	
	State two correct equations in a, b and c	A1√	
	Solve simultaneous equations to obtain one ratio	M1	
	Obtain $a:b:c=-3:9:-1$ or equivalent	A1	
	Obtain equation $-3x + 9y - z = 28$ or equivalent	A1	
	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 8 \end{pmatrix}$		
<u>Or 1</u>	Calculate vector product of two of $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$, $\begin{pmatrix} 2\\-1\\-15 \end{pmatrix}$ and $\begin{pmatrix} 8\\2\\-6 \end{pmatrix}$ or equiv	M1	
	(3) (-15) (-6)		
	Obtain two correct components of the product	A1√	
		1114	
	Obtain correct $\begin{pmatrix} -3\\9\\-1 \end{pmatrix}$ or equivalent	A1	
		AI	
	$\begin{pmatrix} -1 \end{pmatrix}$		
	Substitute in $-3x + 9y - z = d$ to find d or equivalent	M1	
02	Obtain equation $-3x + 9y - z = 28$ or equivalent Form a two-parameter equation of the plane	A1 M1	
<u>Or 2</u>	Form a two-parameter equation of the plane $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	1111	
	Obtain $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ -15 \end{pmatrix}$ or equivalent	. 1 A	
	Obtain $\mathbf{r} = \begin{bmatrix} 3 \\ +s \end{bmatrix} \begin{bmatrix} 1 \\ +t \end{bmatrix} - 1$ or equivalent	A1√	
	(-4) (3) (-15)		
	State three equations in x, y, z, s, t	A1	
	Eliminate <i>s</i> and <i>t</i>	M1	
	Obtain equation $3x - 9y + z = -28$ or equivalent	A1	[
State or impl	y form $A + \frac{B}{2x+1} + \frac{C}{x+2}$	B1	
		D1	
State or obta		B1	
Obtain $B = 1$	nethod for finding <i>B</i> or <i>C</i>	M1 A1	
Obtain $B = 1$ Obtain $C = -$	3	A1 A1	
Obtain $2x +$	$\frac{1}{2}\ln(2x+1) - 3\ln(x+2)$ [Deduct B1 ⁴ for each error or omission]	В3√^	
	nits in expression containing $a\ln(2x + 1) + b\ln(x + 2)$	M1	
Show full an	d exact working to confirm that $8 + \frac{1}{2} \ln 9 - 3 \ln 6 + 3 \ln 2$, or an equivalent		
	implifies to given result $8 - \ln 9$	A1	[1
CD. If A am	itted from the former of functions give DODOMIADAD in (1), DO DI DI MALA	0	
[SK: II A OII in (ii).]	itted from the form of fractions, give B0B0M1A0A0 in (i); B0√B1√B1√M1A	0	
	M = Nx = Px = Q = DODOMIAGAO	`	
[SR:For a so	plution starting with $\frac{M}{2x+1} + \frac{Nx}{x+2}$ or $\frac{Px}{2x+1} + \frac{Q}{x+2}$, give B0B0M1A0A0 in (i));	
	[*] B1√ [*] , if recover correct form, M1A0 in (ii).]		
	plution starting with $\frac{B}{2r+1} + \frac{Dx+E}{r+2}$, give M1A1 for one of $B = 1, D = 2, E = 1$	1	
[SR:For a so			
[SR:For a so and A1	for the other two constants; then give B1B1 for $A = 2$, $C = -3$.]		
[SR:For a so and A1		3	

Page 8		Mark Scheme: Teachers' version		Paper	r
		GCE AS/A LEVEL – May/June 20	12 9709	31	
) (i)	Lise correc	ct identity for tan 2x and obtains $at^4 + bt^3 + ct^2$	+ dt = 0 where <i>h</i> may be zero.	M1	
, (I)		rect horizontal equation, e.g. $4t + 5t^2 - 5t^4 = 0$	<i>u</i> o, where <i>b</i> may be zero	A1	
		$t^3 + et + f = 0$ or equivalent		M1	
					F 41
	Confirm g	given results $t = 0$ and $t = \sqrt[3]{t} + 0.8$		A1	[4]
(ii)	Consider s	sign of $t - \sqrt[3]{t+0.8}$ at 1.2 and 1.3 or equivalent		M1	
		given statement with correct calculations (-0.0)		A1	[2]
(iii)	Use the ite	erative formula correctly at least once with 1.2 <	$< t_n < 1.3$	M1	
		al answer 1.276		A1	
	Show suff (1.2755, 1	icient iterations to justify answer or show there .2765)	is a change of sign in interval	A1	[3]
(iv)		an ⁻¹ (answer from part (iii)) to obtain at least or .24 and 0.906) and π	ne value	M1 A1 B1	[3]