	Pag		Mark Scheme: Teachers' version	9709 Syllabus	<u>s12 m</u> Paper	
	14	ge -	GCE AS/A LEVEL – May/June 2012	9709	23	
1	Obta		Obtain value $x^3 = 27$ from inspection, equation, Obtain value $x^3 = 1$ similarly Obtain $x = 1$ and $x = 3$		B1 B2 B1	
	<u>Or</u> :		Attempt to square both sides obtaining 3 terms on LHS Attempt solution for x^3 of 3-term quadratic Obtain $x^3 = 1$ and $x^3 = 27$ Obtain $x = 1$ and $x = 3$		M1 DM1 A1 A1	[4]
2	Equ Obt Atte	State or imply that $\ln y = \ln A + x \ln b$ Equate intercept on y-axis to $\ln A$ Obtain $\ln A = 2.14$ and hence $A = 8.5$ Attempt gradient of line or equivalent (or use of correct substitution)				[6]
	Obt	ain 0	$.47 = \ln b$ or equivalent and hence $b = 1.6$		A1	[5]
3	(i)		stitute 2 and equate to zero or divide and equate remainder to ain $a = 2$) zero	M1 A1	[2]
	(ii)	(a)	Attempt to find quadratic factor by division, inspection or ic Obtain $2x^2 + x - 3$ Conclude $(x - 2)(2x + 3)(x - 1)$	lentity	M1 A1 A1	[3]
		(b)	Attempt substitution of -1 or attempt complete division by 3 Obtain 6	x + 1	M1 A1	[2]
4	(i)	Atte	$e^{2} \sec^{2} \theta = 1 + \tan^{2} \theta$ empt solution of quadratic equation in $\tan \theta$ ain $\tan^{2} \theta - 12 \tan \theta + 36 = 0$ or equivalent and hence $\tan \theta =$	- 6	B1 M1 A1	[3]
	(ii)	(a)	Attempt use of $tan(A - B)$ formula Obtain $\frac{5}{7}$ following their value of tan θ		M1 A1√	[2]
		(b)	Attempt use of tan 2θ formula Obtain $-\frac{12}{35}$		M1 A1	[2]
5			ferentiate to obtain expression of form $ke^{\frac{1}{2}x} + m$		M1	
		Equ	ain correct $2e^{\frac{1}{2}x} - 6$ hate attempt at first derivative to zero and attempt solution ain $\frac{1}{2}x = \ln 3$ or equivalent		A1 DM1 A1	
			$aclude x = \ln 9 \text{ or } a = 9$		A1	[5]
	(ii)		grate to obtain expression of form $ae^{\frac{1}{2}x} + bx^2 + cx$		M1	
		Sub	ain correct $8e^{\frac{1}{2}x} - 3x^2 + 3x$ stitute correct limits and attempt simplification ain $8e - 14$		A1 DM1 A1	[4]

		9709	<u>s12</u> m	s_23
P	age 5	Mark Scheme: Teachers' version Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012 9709	23	
(i)	Obtain de Obtain –4	rivative of form $k(2t + 1)^{-3}$ $(2t + 1)^{-3}$ or equivalent as derivative of x	M1 A1	
	Obtain $\frac{1}{2}$	$(t+2)^{-\frac{1}{2}}$ or equivalent as derivative of y	B1	
	-	tempt at $\frac{dy}{dx}$ to -1	M1	
	Obtain (2	$(p+1)^3 = 8(p+2)^{\frac{1}{2}}$ or equivalent	A1	
	Confirm g	given answer $p = (p+2)^{\frac{1}{6}} - \frac{1}{2}$	A1	[6]
(ii)	Obtain fir Show suft the interve	ion process correctly at least once hal answer 0.678 ficient iterations to 5 decimal places to justify answer or show a sign change al (0.6775, 0.6785) $0.68003 \rightarrow 0.67857 \rightarrow 0.67847 \rightarrow 0.67846$]	M1 A1 in A1	[3]
7 (i)	Use 2 sin Attempt to Obtain co	b obtain $4 \sin^2 x + 4 \sin x \cos x + \cos^2 x$ $x \cos x = \sin 2x$ o express $\sin^2 x$ or $\cos^2 x$ (or both) in terms of $\cos 2x$ rrect $\frac{1}{2}k(1 - \cos 2x)$ for their $k \sin^2 x$ or equivalent given answer $\frac{5}{2} + 2\sin 2x - \frac{3}{2}\cos 2x$	B1 B1 M1 A1√ A1	[5]
(ii)	Obtain $\frac{5}{2}$.	to obtain form $px + q \cos 2x + r \sin 2x$ $x - \cos 2x - \frac{3}{4} \sin 2x$ e limits in integral of form $px + q \cos 2x + r \sin 2x$ and attempt simplification	M1 A1 DM1	

Obtain $\frac{5}{8}\pi + \frac{1}{4}$ or exact equivalent A1 [4]