				9709	9709_s12_ms_22		
	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2012	9709	22		
1	<u>Eith</u>	n <u>er</u> : State or pa Atte Obta	e or imply non-modular inequality $(x + 3)^2 < (2x + 1)^2$ or conair of linear equations mpt solution of 3-term quadratic or of 2 linear equations ain critical values $-\frac{4}{3}$ and 2	rresponding equat	ion B1 M1 A1		
		State	e answer $x < -\frac{4}{3}, x > 2$		A1		
	<u>Or</u> :	Obta Obta	ain critical value $x = 2$ from graphical method, inspection, eq ain critical value $x = -\frac{4}{3}$ similarly	uation	B1 B2		
		State	e answer $x < -\frac{4}{3}, x > 2$		B1	[4]	
2	(i)	State or in Attempt s Obtain 5 ^x	mply equation in the form $(5^x)^2 + 5^x - 12 = 0$ solution of quadratic equation for 5^x		B1 M1 A1	[3]	
	(ii)	Use logar Obtain 0.	rithms to solve equation of the form $5^x = k$ where $k > 0$ 683		M1 A1	[2]	
3	(i)	Attempt o Obtain qu Complete	division, or equivalent, at least as far as quotient $2x + k$ notient $2x - 3$ e process to confirm remainder is 4		M1 A1 A1	[3]	
	(ii)	State or in Obtain (2	mply $(4x^2 + 4x - 3)$ is a factor (2x - 3)(2x - 1)(2x + 3)		B1 B1	[2]	
4	(i)	State or in Use appro Obtain 53	mply $R = 15$ opriate formula to find α 3.13°		B1 M1 A1	[3]	
	(ii)	Attempt to Obtain or Carry out Obtain 21	to find at least one value of $\theta - \alpha$ ne correct value 68.6° of θ t correct method to find second answer 17.7° and no others in range		M1 A1 M1 A1	[4]	
	(iii)	State 15,	following their value of <i>R</i> from part (i)		B1	[1]	
5	(i)	State $\frac{\mathrm{d}x}{\mathrm{d}t}$	$=\frac{1}{t+1}$		B1		
		State $\frac{\mathrm{d}y}{\mathrm{d}t}$	$=2e^{2t}+2$		B1		
		Attempt of	expression for $\frac{dy}{dx}$		M1		
		Obtain $\frac{d}{d}$	$\frac{y}{x} = (2e^{2t} + 2)(t+1)$ or equivalent		A1	[4]	
	(ii)	Substitute	e $t = 0$ and attempt gradient of normal		M1		
		Obtain –	$\frac{1}{4}$ following their expression for $\frac{-2}{dx}$		A1√		
		Attempt to Obtain x	to find equation of normal through point (0, 1) $+ 4y - 4 = 0$		M1 A1	[4]	

				9709 s12 ms 22			
Page 5		ge 5	Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2012	9709	22		
6	(i)	Attempt u	use of quotient rule or equivalent $(r + 2) \cos 2r$, $\sin 2r$		M1		
		Obtain $\frac{2}{}$	$\frac{(x+2)\cos 2x - \sin 2x}{(x+2)^2}$ or equivalent		A1		
		Equate nu Confirm g	imerator to zero and attempt rearrangement given result tan $2x = 2x + 4$		M1 A1	[4]	
	(ii)	Consider Obtain –2	sign of tan $2x - 2x - 4$ for 0.6 and 0.7 or equivalent 2.63 and 0.40 or equivalents and justify conclusion		M1 A1	[2]	
	(iii)	Use iterat Obtain fir	ion process correctly at least once nal answer 0.694		M1 A1		
		Show suff the interv $[0.6 \rightarrow 0.65 \rightarrow 0.7 \rightarrow 0]$	ficient iterations to 5 decimal places to justify answer or sho al $(0.6935, 0.6945)$ $0.69040 \rightarrow 0.69352 \rightarrow 0.69363$ $0.69215 \rightarrow 0.69358 \rightarrow 0.69363$ $.69384 \rightarrow 0.69364 \rightarrow 0.69363]$	ow a sign change in	A1	[3]	
7	(i)	Replace to Express constrained of the constraint of the constrain	an ² x by sec ² x - 1 os ² x in the form $\pm \frac{1}{2} \pm \frac{1}{2} \cos 2x$ ven answer sec ² x + $\frac{1}{2} \cos 2x - \frac{1}{2}$ correctly ntegration of expression n x + $\frac{1}{4} \sin 2x - \frac{1}{2}x$ s correctly for integral involving at least tan x and sin 2x $-\frac{1}{8}\pi$ or exact equivalent		B1 M1 A1 M1 A1 M1 A1	[7]	
	(ii)	State or in	mply volume is $\int \pi (\tan x + \cos x)^2 dx$		B1		
		Attempt e Integrate	Expansion and simplification to obtain one term of form $k \cos x$		M1 M1		
		Obtain π	$\left(\frac{5}{4} - \frac{1}{8}\pi\right) + \pi(2 - \sqrt{2})$ or equivalent		A1	[4]	