Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	22

1 Either: State or imply non-modular inequality $(x+3)^{2}<(2 x+1)^{2}$ or corresponding equation or pair of linear equations
Attempt solution of 3-term quadratic or of 2 linear equations M1
Obtain critical values $-\frac{4}{3}$ and $2 \quad$ A1
State answer $x<-\frac{4}{3}, x>2 \quad$ A1
Or: Obtain critical value $x=2$ from graphical method, inspection, equation B1
Obtain critical value $x=-\frac{4}{3}$ similarly \quad B2
State answer $x<-\frac{4}{3}, x>2$
B1

2 (i) State or imply equation in the form $\left(5^{x}\right)^{2}+5^{x}-12=0$
Attempt solution of quadratic equation for 5^{x} M1
Obtain $5^{x}=3$ only
(ii) Use logarithms to solve equation of the form $5^{x}=k$ where $k>0$

Obtain 0.683 A1

3 (i) Attempt division, or equivalent, at least as far as quotient $2 x+k$
Obtain quotient $2 x-3$
Complete process to confirm remainder is 4
(ii) State or imply $\left(4 x^{2}+4 x-3\right)$ is a factor B1

Obtain $(2 x-3)(2 x-1)(2 x+3)$

4 (i) State or imply $R=15$
Use appropriate formula to find $\alpha \quad$ M1
Obtain 53.13° A1
(ii) Attempt to find at least one value of $\theta-\alpha \quad$ M1

Obtain one correct value 68.6° of θ A1
Carry out correct method to find second answer M1
Obtain 217.7° and no others in range A1
(iii) State 15 , following their value of R from part (i)

B1 $\sqrt{ }$

5 (i) State $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{t+1}$
State $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \mathrm{e}^{2 t}+2$
Attempt expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(2 \mathrm{e}^{2 t}+2\right)(t+1)$ or equivalent A1
$\begin{array}{lr}\text { (ii) Substitute } t=0 \text { and attempt gradient of normal } & \text { M1 } \\ \text { Obtain }-\frac{1}{4} \text { following their expression for } \frac{\mathrm{d} y}{\mathrm{~d} x} & \text { A1 } \sqrt{ } \\ \text { Attempt to find equation of normal through point }(0,1) & \text { M1 }\end{array}$
Obtain $x+4 y-4=0$

Page 5	Mark Scheme: Teachers' version	Syllabus	
	GCE AS/A LEVEL - May/June 2012	$\mathbf{9 7 0 9}$	$\mathbf{2 2}$

6 (i) Attempt use of quotient rule or equivalent
Obtain $\frac{2(x+2) \cos 2 x-\sin 2 x}{(x+2)^{2}}$ or equivalent
Equate numerator to zero and attempt rearrangement M1
Confirm given result $\tan 2 x=2 x+4$
(ii) Consider sign of $\tan 2 x-2 x-4$ for 0.6 and 0.7 or equivalent M1

Obtain -2.63 and 0.40 or equivalents and justify conclusion
A1
(iii) Use iteration process correctly at least once M1

Obtain final answer 0.694
Show sufficient iterations to 5 decimal places to justify answer or show a sign change in the interval $(0.6935,0.6945)$
$[0.6 \rightarrow 0.69040 \rightarrow 0.69352 \rightarrow 0.69363$
$0.65 \rightarrow 0.69215 \rightarrow 0.69358 \rightarrow 0.69363$
$0.7 \rightarrow 0.69384 \rightarrow 0.69364 \rightarrow 0.69363]$

7 (i) Replace $\tan ^{2} x$ by $\sec ^{2} x-1$
B1
Express $\cos ^{2} x$ in the form $\pm \frac{1}{2} \pm \frac{1}{2} \cos 2 x$
M1
Obtain given answer $\sec ^{2} x+\frac{1}{2} \cos 2 x-\frac{1}{2}$ correctly A1
Attempt integration of expression M1
Obtain $\tan x+\frac{1}{4} \sin 2 x-\frac{1}{2} x \quad$ A1
Use limits correctly for integral involving at least $\tan x$ and $\sin 2 x \quad$ M1
Obtain $\frac{5}{4}-\frac{1}{8} \pi$ or exact equivalent A1
(ii) State or imply volume is $\int \pi(\tan x+\cos x)^{2} \mathrm{~d} x \quad$ B1

Attempt expansion and simplification M1
Integrate to obtain one term of form $k \cos x$ M1
Obtain $\pi\left(\frac{5}{4}-\frac{1}{8} \pi\right)+\pi(2-\sqrt{2})$ or equivalent A1

