Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	21

1 Either: Obtain value $x^{3}=27$ from inspection, equation, B1
Obtain value $x^{3}=1$ similarly B2
Obtain $x=1$ and $x=3$ B1
Or: \quad Attempt to square both sides obtaining 3 terms on LHS M1
Attempt solution for x^{3} of 3-term quadratic DM1
Obtain $x^{3}=1$ and $x^{3}=27$ A1
Obtain $x=1$ and $x=3$ A1
2 State or imply that $\ln y=\ln A+x \ln b$ B1
Equate intercept on y-axis to $\ln A$ M1
Obtain $\ln A=2.14$ and hence $A=8.5$ A1
Attempt gradient of line or equivalent (or use of correct substitution) M1
Obtain $0.47=\ln b$ or equivalent and hence $b=1.6$ A1
3 (i) Substitute 2 and equate to zero or divide and equate remainder to zero M1
Obtain $a=2$A1
(ii) (a) Attempt to find quadratic factor by division, inspection or identity M1
Obtain $2 x^{2}+x-3$ A1
Conclude $(x-2)(2 x+3)(x-1)$ A1
(b) Attempt substitution of -1 or attempt complete division by $x+1$ M1
Obtain 6 A1 A1
[2]
4 (i) Use $\sec ^{2} \theta=1+\tan ^{2} \theta$ B1
Attempt solution of quadratic equation in $\tan \theta$ M1
Obtain $\tan ^{2} \theta-12 \tan \theta+36=0$ or equivalent and hence $\tan \theta=6$ A1
(ii) (a) Attempt use of $\tan (A-B)$ formula M1
Obtain $\frac{5}{7}$ following their value of $\tan \theta$ A1 $\sqrt{ }$
(b) Attempt use of $\tan 2 \theta$ formula M1
Obtain $-\frac{12}{35}$ A1[3]
5 (i) Differentiate to obtain expression of form $k \mathrm{e}^{\frac{1}{2} x}+m$ M1
Obtain correct $2 \mathrm{e}^{\frac{1}{2} x}-6$ A1
Equate attempt at first derivative to zero and attempt solution DM1
Obtain $\frac{1}{2} x=\ln 3$ or equivalent A1Conclude $x=\ln 9$ or $a=9$A1
[5]
(ii) Integrate to obtain expression of form $a \mathrm{e}^{\frac{1}{2} x}+b x^{2}+c x$ M1
Obtain correct $8 \mathrm{e}^{\frac{1}{2} x}-3 x^{2}+3 x$ A1
Substitute correct limits and attempt simplification DM1
Obtain 8e-14 A1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	21

6 (i) Obtain derivative of form $k(2 t+1)^{-3}$ M1
Obtain $-4(2 t+1)^{-3}$ or equivalent as derivative of x A1
Obtain $\frac{1}{2}(t+2)^{-\frac{1}{2}}$ or equivalent as derivative of y B1
Equate attempt at $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to -1 M1
Obtain $(2 p+1)^{3}=8(p+2)^{\frac{1}{2}}$ or equivalent A1
Confirm given answer $p=(p+2)^{\frac{1}{6}}-\frac{1}{2}$ A1
[6](ii) Use iteration process correctly at least onceM1
Obtain final answer 0.678 A1Show sufficient iterations to 5 decimal places to justify answer or show a sign change inthe interval $(0.6775,0.6785)$
7 (i) Expand to obtain $4 \sin ^{2} x+4 \sin x \cos x+\cos ^{2} x$ B1
Use $2 \sin x \cos x=\sin 2 x$ B1
Attempt to express $\sin ^{2} x$ or $\cos ^{2} x$ (or both) in terms of $\cos 2 x$ M1
Obtain correct $\frac{1}{2} k(1-\cos 2 x)$ for their $k \sin ^{2} x$ or equivalent A1 $\sqrt{ }$Confirm given answer $\frac{5}{2}+2 \sin 2 x-\frac{3}{2} \cos 2 x$A1
(ii) Integrate to obtain form $p x+q \cos 2 x+r \sin 2 x$M1
Obtain $\frac{5}{2} x-\cos 2 x-\frac{3}{4} \sin 2 x$ A1
Substitute limits in integral of form $p x+q \cos 2 x+r \sin 2 x$ and attempt simplification DM1Obtain $\frac{5}{8} \pi+\frac{1}{4}$ or exact equivalentA1

