Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	13

$1 \tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta$
(i) $\frac{s^{2}}{c^{2}}-s^{2}$
$\rightarrow \frac{s^{2}-s^{2} c^{2}}{c^{2}}=\frac{s^{2}\left(1-c^{2}\right)}{c^{2}}$
$\rightarrow t^{2} s^{2}$
(ii) RHS $>0 \rightarrow \tan ^{2} \theta>\sin ^{2} \theta$ QED $\tan \theta>\sin \theta$ if θ acute.
$2 \overrightarrow{O A}=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{c}4 \\ 2 \\ -2\end{array}\right), \overrightarrow{O C}=\left(\begin{array}{l}1 \\ 3 \\ p\end{array}\right)$.
(i) $\overrightarrow{A B}=\left(\begin{array}{c}2 \\ 3 \\ -6\end{array}\right)$ Modulus $=\sqrt{(4+9+36)}$

Unit Vector $=\frac{1}{7}\left(\begin{array}{c}2 \\ 3 \\ -6\end{array}\right)$
(ii) $\overrightarrow{O B} \cdot \overrightarrow{O C}=4+6-2 p$
$=0 \rightarrow p=5$
$3 \quad(1-2 x)^{2}(1+a x)^{6}$
Coeff of x in $(1+a x)^{6}=6 a x$
Coeff of x^{2} in $(1+a x)^{6}=15 a^{2} x^{2}$
Multiplies by $\left(1-4 x+4 x^{2}\right)$
2 terms in $x \quad 6 a-4=-1$
$\rightarrow a=1 / 2$
3 terms in $x^{2} 15 a^{2}-24 a+4=\mathrm{b}$
$\rightarrow b=-4 \frac{1}{4}$
$4 \quad \sin 2 x+3 \cos 2 x=0$
(i) $\rightarrow \tan 2 x=-3$
$2 x=180-71.6$ or $360-71.6$
$x=54.2^{\circ}$ or 144.2°
Also 234.2° and 324.2°
(ii) 12 answers.
\square
,
M1

Use of $s \div c=\mathrm{t}$
Use of $s^{2}+c^{2}=1$
All ok
[3]

B1
Realises RHS >0
[1]

B1 M1
co. Correct method for modulus
co for his vector $\mathbf{A B}$.
[3]

M1A1
Dot product $=0 . \operatorname{co}$
[2]

B1
B1
M1
A1

M1
A1

M1
M1
A1A1N
A1 ${ }^{\wedge}$

B1 ${ }^{\wedge}$
[6]
Needs to consider 3 terms in equation
[5]
6 C 1 needs removing (here or later)
6 C 2 needs removing (here or later)
Needs to consider 2 terms in equation Co

Uses $\tan 2 x=k$ and works with " $2 x$ ".
Finds " $2 x$ " before $\div 2$
co. co ${ }^{\wedge}$ (both of these need 2 nd M) for $180^{\circ}+$ his answer(s)
for 3 times the number of solns to (i).

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	13

5 $\begin{aligned} & x=\frac{8}{y^{2}}-2 ; \text { at } x=0, y=2 \\ & \rightarrow x^{2}=\frac{64}{y^{4}}-\frac{32}{y^{2}}+4 \\ & \text { Integral of } x^{2}=\frac{64 y^{-3}}{-3}-\frac{32 y^{-1}}{-1}+4 y \end{aligned}$ Uses limits 1 to 2 $\rightarrow 6^{2} / 3 \pi$	B1 B1B1B1 M1 A1 [6]	co All co. Uses 1 to 2 or 2 to 1 . co.
6 (i) Uses S_{n} $\frac{9}{2}(24+8 d)=135 \rightarrow d=3 / 4$ (ii) $9^{\text {th }}$ term of $\mathrm{AP}=12+8 \times 3 / 4=18$ GP $1^{\text {st }}$ tern $12,2^{\text {nd }}$ term 18 Common ratio $=r=18 \div 12=1 \frac{1}{2}$ $3^{\text {rd }}$ term of $\mathrm{GP}=a r^{2}=27$ nth term of AP is $12+(n-1)^{3 / 4}$ $12+(n-1)^{3 / 4}=27 \rightarrow n=21$	M1 A1 [2] B1 ${ }^{\wedge}$ M1 M1 M1A1 [5]	Uses correct formula co \hat{N} on " $d "$ Uses "ar" Uses $a r^{2}$ or " $a r$ " $\times r$ Links AP with GP. co
$7 \quad y=\frac{10}{2 x+1}-2$ (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-10}{(2 x+1)^{2}} \times 2$ At $A, y=0, \rightarrow x=2$ m at $x=2$, is $-\frac{4}{5}$ Eqn of tangent is $y=-\frac{4}{5}(x-2)$ $\rightarrow 5 y+4 x=8$ (ii) $\begin{aligned} & C(0,1.6) \\ & d=\sqrt{\left(1.6^{2}+2^{2}\right)}=2.56 \end{aligned}$	B1 B1 B1 M1 A1 [5] M1 A1 [2]	Without the " $\times 2$ ". For the " $\times 2$ ". For $x=2$ Must be using differential as m co - answer given. Correct method - needs 凤. co
8 (i) $\begin{aligned} & O B X=90^{\circ}, \cos \theta=\frac{r}{2 r} \\ & \rightarrow \theta=1 / 3 \pi . \end{aligned}$ (ii) Arc length $A B=1 / 3 r \pi$ $\begin{aligned} & B X=r \tan (1 / 3 \pi)=r \sqrt{3} \\ & P=r+(1 / 3 r \pi+r \sqrt{3}) \end{aligned}$ (iii) Area $=\frac{1}{2} r^{2} \sqrt{3}-\frac{1}{6} r^{2} \pi$	M1 A1 [2] B1 B1 B1 [3] B1^ B1 [2]	Needs $90^{\circ}+\cos$ (or Pyth $+\sin$ or \tan) co ag $r+$ sum of other two \hat{V}^{\prime} on $\tan (1 / 3 \pi)$.co

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	13

$9 \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-4 x$ (i) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x^{2}+c \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text { when } x=2, \rightarrow c=8 \\ & y=-\frac{2 x^{3}}{3}+8 x \quad(+C) \end{aligned}$ Subs $(2,12) \rightarrow C=\frac{4}{3}$ (iii) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \\ & =-10 \times 0.05 \\ & \rightarrow \text { decreasing at } 0.5 \text { units per second } \end{aligned}$	B1 B1 B1 B1 \downarrow M1 A1 [6] M1 A1 [2]	For $-2 x^{2}$ $c=8$ For each term $-\vee$ on " c "- ignore $(+C)$ Uses $(2,12)$ to find C. Must use. Enough to see product of gradient and rate. bod over notation.
$10 \quad 2 y+x=k \quad x y=6$ (i) $\begin{aligned} & 2 y+x=8 \rightarrow y(8-2 y)=6 \\ & 2 y^{2}-8 y+6=0 \text { or } x^{2}-8 x+12=0 \\ & \rightarrow(6,1) \text { and }(2,3) \end{aligned}$ Midpoint $M(4,2)$ $m=-1 / 2$ Perpendicular $m=2$ $\rightarrow y-2=2(x-4)$ (ii) $\begin{aligned} & (k-2 y) y=6 \\ & \rightarrow 2 y^{2}-k y+6=0 \text { or } x^{2}-k x+12=0 \\ & \text { Uses } b^{2}-4 a c(0) \\ & \rightarrow k^{2}>48 \\ & \rightarrow k<-\sqrt{48} \text { and } k>\sqrt{48} \end{aligned}$	M1 DM1A1 M1 M1 A1 [6] M1 A1 A1 [3]	Complete elimination of x (or y) DM1 soln of quadratic. co for their 2 points Uses $m_{1} m_{2}=-1$ to find perp. gradient co unsimplified Any use of $b^{2}-4 a c$ on a quadratic $=0$ For $\sqrt{ } 48$ on its own All correct.

$11 \mathrm{f}(x)=8-(x-2)^{2}$,
(i) Stationary point at $x=2$
$y-$ coordinate $=8$
Nature Maximum
(or $y y=-x^{2}+4 x+4$
$-2 x+4=0 \rightarrow(2,8)$ Max)
(ii) $k=2$
(iii) $y=8-(x-2)^{2}$
$\rightarrow(x-2)^{2}+y=8$
$\rightarrow(x-2)= \pm \sqrt{8-y}$
$\rightarrow \mathrm{g}^{-1}=2+\sqrt{8-x}$
(iv)

B1
B1
B1
[3]
B1 \downarrow

M1
M1
A1

B1
B1
B1
3]
[1]
[3]
co
co
co independent of first two marks
\checkmark on " x-value"

Attempt to make x the subject
Order of operations correct
Must be $\mathrm{f}(x)$.

B1 arc 1st quad (no tp, no axes)
B1 Evidence of symmetry about $y=x$
B1 all correct as shown left
[3]

