					<u>9709_s12 ms_1</u> 3
	Page 4	Mark Scheme: Teachers	Syllabus Paper		
		GCE AS/A LEVEL – May/	June 201	2	9709 13
			1		
1	$\tan^2\theta - \sin^2\theta$	$\theta = \tan^2 \theta \sin^2 \theta$			
	s^2 2				
	(i) $\frac{1}{c^2} - s^2$		M1		$\mathbf{U}_{\alpha\alpha}$ of $\alpha \cdot \alpha = t$
	$s^2 - s$	$s^2 c^2 = s^2 (1 - c^2)$	1011		Use of $s \div c - t$
	$\rightarrow \frac{5}{c^2}$	$\frac{1}{2} = \frac{1}{2} \frac{1}{c^2}$	M1		Use of $s^2 + c^2 = 1$
	$\rightarrow t^2 s^2$	C			
			A1		All ok
				[3]	
	(ii) RHS > 0	$\rightarrow \tan^2 \theta > \sin^2 \theta$ QED			
	$\tan \theta > \sin \theta$	n θ if θ acute.	B1		Realises $RHS > 0$
				[1]	
	\rightarrow $\begin{pmatrix} 2 \\ \end{pmatrix}$ -	$\rightarrow \begin{pmatrix} 4 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ \end{pmatrix}$			
2	OA = -1 , C	$\mathcal{DB} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \ \mathcal{OC} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$			
	(4)	(-2) (p)			
	(2				
	(i) $\overrightarrow{AB} = \begin{vmatrix} 3 \end{vmatrix}$	Modulus = $\sqrt{(4+9+36)}$	D1 M1		as Correct method for modulus
	(6)	DIWII		co. Correct method for modulus
		(2)			
	Unit Vect	tor $= \frac{1}{2} 3 $			
		$\begin{bmatrix} 7 \\ -6 \end{bmatrix}$	A1√	[2]	co for his vector AB .
	$\longrightarrow \longrightarrow$	$\left(\begin{array}{c} 0 \right)$		[3]	
	(ii) <i>OB.OC</i> =	4 + 6 - 2p			
	$=0 \rightarrow p$	b = 5	M1A1		Dot product = $0.$ co
				[2]	
2	$(1 - 2r)^2(1 + a)$				
5	(1-2x)(1+a)	$(1, 1)^{6}$			
	Coeff of x in ($(1+ax)^{2} = 6ax$	B1		6C1 needs removing (here or later)
	Coeff of x^2 in	$(1+ax)^\circ = 15a^2x^2$	B1		6C2 needs removing (here or later)
	Multiplies by	$(1 - 4x + 4x^2)$	M1		Needs to consider 2 terms in equation
	2 terms in x	6a - 4 = -1	A1		Co
	$\rightarrow a = \frac{1}{2}$		_		
	.				
	3 terms in x^2	$15a^2 - 24a + 4 = b$			Needs to consider 3 terms in equation
	$\rightarrow D - 4/4$			[6]	
<u> </u>				r., 1	
4	$\sin 2x + 3\cos 2$	2x = 0			
	(i) $\rightarrow \tan 22$ 2x = 180	x = -3	MI M1		Uses $\tan 2x = k$ and works with "2x". Finds "2x" before $\div 2$
	$x = 54.2^{\circ}$	or 144.2°	A1A1		co. co^{A} (both of these need 2nd M)
	Also 234	.2° and 324.2°	A1√		for 180° + his answer(s)
				[5]	
	(!) 10		D1 Å		
	(ii) 12 answe	rs.	BI≜	[1]	for 3 times the number of solns to (i).
1				[1]	

<u>9709 s12 ms 13</u>

	Page 5	Mark Scheme: Teachers' version		Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012		9709	13	
r						
5	$x = \frac{8}{y^2} - 2; a$	x = 0, y = 2	B1	со		
	$\rightarrow x^2 = \frac{64}{y^4} - $	$\frac{32}{y^2} + 4$				
	Integral of x^2 =	$=\frac{64y^{-3}}{-3}-\frac{32y^{-1}}{-1}+4y$	B1B1B1	All c	20.	
	Uses limits 1 t $\rightarrow 6^{2/3}\pi$	zo 2	M1 A1 [6	Uses co.	s 1 to 2 or 2 to 1.	
6	(i) Uses S_n $\frac{9}{2}(24+8)$	$d) = 135 \rightarrow d = \frac{3}{4}$	M1 A1 [2	Uses co 2]	correct formula	
	(ii) 9 th term of	of AP = $12 + 8 \times \frac{3}{4} = 18$	В1√	√ [^] on	" <i>d</i> "	
	GP 1 st te Common 3 rd term c	rn 12, 2 nd term 18 ratio = $r = 18 \div 12 = 1\frac{1}{2}$ of GP = $ar^2 = 27$	M1 M1	Uses Uses	ar'' ar^2 or " ar " × r	
	<i>n</i> th term $12 + (n - 1)$	of AP is $12 + (n - 1)^{3/4}$ $1)^{3/4} = 27 \rightarrow n = 21$	M1A1 [5	5] Link	s AP with GP. co	
7	$y = \frac{10}{2x+1} - 2$ (i) $\frac{dy}{dx} = -\frac{10}{2x+1} - 2$	-10×2				
	$\frac{dx}{dx} = \frac{1}{(2)}$	$ x+1)^2 \xrightarrow{\times 2} $ = 0, $\rightarrow x = 2 $	B1 B1	With	nout the " \times 2". For	the "×2".
	m at $x = 2$	2, is $-\frac{4}{5}$	B1	For	x = 2	
	Eqn of ta $\rightarrow 5y + 4$	ngent is $y = -\frac{4}{5}(x-2)$ 4x = 8	M1 A1 [5	Mus co –	t be using differen answer given.	tial as <i>m</i>
	(ii) $C(0, 1.6)$ $d = \sqrt{(1.6)}$	$\left(\frac{1}{2}+2^2\right) = 2.56$	M1 A1 [2	Corr	ect method – need	ls √ [*] . co
8	(i) $OBX = 90$ $\rightarrow \theta = \frac{1}{2}$	$\theta^{\circ}, \cos \theta = \frac{r}{2r}$	M1 A1 [2	Need co ag	ds 90° + cos (or Py g	rth + sin or tan)
	(ii) Arc lengt BX = rtar P = r + (t)	$h AB = \frac{1}{3} r\pi$ $h(\frac{1}{3}\pi) = r \sqrt{3}$ $\frac{1}{3} r\pi + r \sqrt{3}$	B1 B1 B1 [3	r+s	um of other two	
	(iii) Area = $\frac{1}{2}$	$\frac{1}{2}r^2\sqrt{3}-\frac{1}{6}r^2\pi$	B1√ [™] B1 [2	2] √ ⁺ on	$\tan(\frac{1}{3}\pi)$. co	

$\circ \Box \circ \circ$	10		10
a.///a	a 1 7	mc	1 2
	DIZ	III D	т <u>э</u>

	Page 6	Mark Scheme: Teachers' version			Syllabus	Paper	
		GCE AS/A LEVEL – May/	June 2012		9709	13	
			1	T			
9	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -4x$						
	(i) $\frac{dy}{dx} = -2$ $\frac{dy}{dx} = 0$ w	$x^2 + c$ when $x = 2, \rightarrow c = 8$	B1	For -	$-2x^{2}$		
	dx $y = -\frac{2x^3}{3}$	+8x (+C)	В1 В1 В1√ [*]	c = 8 For e	each term – ∜ [≞] on '	<i>c</i> "– ignore (+ <i>C</i>)	
	Subs (2, 1	$2) \rightarrow C = \frac{4}{3}$	M1 A1 [6]	Uses	(2, 12) to find <i>C</i> .		
	(iii) $\frac{dy}{dt} = \frac{dy}{dx}$ = -10 × 0 \rightarrow decrease	$\times \frac{dx}{dt}$ 0.05 asing at 0.5 units per second	M1 A1	Musi gradi	t use. Enough to a tent and rate. bod	see product of over notation.	
10	$2y + x = k$ (i) $2y + x = k$ $2y^{2} - 8y$ (6, 1) 2	xy = 6 $8 \rightarrow y(8-2y) = 6$ $+ 6 = 0 \text{ or } x^2 - 8x + 12 = 0$ rd(2, 3)	M1 DM1A1	Com DM1	plete elimination	of <i>x</i> (or <i>y</i>) c. co	
	$ \begin{array}{l} \text{Midpoint} \\ m = -\frac{1}{2} \\ \text{Perpendic} \\ \rightarrow y - 2 \end{array} $	M(4, 2) cular $m = 2$ = 2(x - 4)	M1 M1 A1	for th Uses co u	their 2 points $m_1m_2 = -1$ to find nsimplified	l perp. gradient	
	(ii) $(k-2y)y$ $\rightarrow 2y^2 -$ Uses $b^2 -$ $\rightarrow k^2 > 4$ $\rightarrow k < -x$	y = 6 $ky + 6 = 0 \text{ or } x^2 - kx + 12 = 0$ 4ac (0) 8 $\sqrt{48}$ and $k > \sqrt{48}$	[6] M1 A1 A1 [3]	Any For Y All c	use of $b^2 - 4ac$ over $\sqrt{48}$ on its own correct.	on a quadratic =	0

						97()9 s12 ms 13
	Page 7	Mark Scheme: Teache	ers' versio	on		Syllabus	Paper
	GCE AS/A LEVEL – May/J)12		9709	13
11	$\mathbf{f}(x) = 8 - (x - 1)$	2) ² ,					
	(i) Stationary y - coord Nature M (or $y = y = 0$	y point at $x = 2$ inate = 8 Maximum $-x^2 + 4x + 4$	B1 B1 B1		co co co ir	ndependent of fir	rst two marks
	-2x + 4 =	$= 0 \rightarrow (2, 8) \text{ Max}$		[3]			
	(ii) $k = 2$		B1√	[1]	√ [*] on	"x-value"	
	(iii) $y = 8 - (x + y) = 8 $	$(-2)^2$					
	$\rightarrow (x-2)$	$(2)^2 + y = 8$	M1		Atter	npt to make x th	e subject
	$\rightarrow (x-2)$	$f(x) = \pm \sqrt{8 - y}$	M1		Orde	r of operations c	correct
	\rightarrow g ⁻¹ =	$2+\sqrt{8-x}$	A1	[3]	Must	be $f(x)$.	
	(iv)	y=g(x), y= x y=g^*(x)	B1 B1 B1	[3]	B1 an B1 E B1 al	rc 1st quad (no t vidence of symr ll correct as show	p, no axes) netry about $y = x$ wn left
	0 🗠 🗕	>x					