	Page 4	Mark Scheme: Teachers	' version		970 Syllabus	9 s12 ms 11 Paper	
	raye 4	GCE AS/A LEVEL – May/		9709			
1	$\tan 2x = 2$ 2x = 63.4 or 24 x = 31.7 or 12	M1 A1 A1A1√ ^ħ [4]	1 solution sufficient For 2^{nd} A1 allow 90 + 1 st soln prov. only 2 solns in range. Alt methods possible				
2	$[7C3] \times [(2x^3)^6]$ 35 × 2 ⁴ × (-1) ⁵ -560(x ⁶) as an	B1B1 B1 B1 [4]	2 elements correct, 3^{rd} element correct 2 elements correct. Identifying reqd term SC B3 for [560(x) ⁶] as answer				
3	$AQ \text{ (or } r) = \sqrt{3}$ Area $\Delta = \sqrt{3}$ (or area $\Delta AQC = \frac{\sqrt{3}}{2}$) Area sector $APR = \frac{1}{2} (\sqrt{3})^2 \times \frac{\pi}{3} = \frac{\pi}{2}$		B1 B1√ [≜] M1A1√ [≜]	soi ft ft <i>theii</i>	soi Allow 1.73 soi ft <i>their</i> $\sqrt{3}$ Allow 1.73 ft <i>their</i> $\sqrt{3}$. Allow 1.57. SCA1 for $\pi/4$ from $\frac{1}{2}(\sqrt{3})^2 \times \frac{\pi}{6}$ provided $\Delta = \frac{\sqrt{3}}{2}$		
	Shaded region	$= \sqrt{3} - \frac{\pi}{2}$ oe cao	A1 [5]		2 0	2	
4	$\left(\frac{\mathrm{d}M}{\mathrm{d}r}\right) = 3kr^2$	$k = \frac{3.2}{1000}$ or $\frac{2}{625}$ or 0.0032 oe $\frac{hr}{ht}$ used e.g. $3 \times k \times 10^2 \times 0.1$	M1A1 B1 M1 A1 [5]	cao. N	eventually make Non-calculus me 96) can score on	ethods (e.g. \rightarrow	
5	$(3\sqrt{x} - 2)$ $\sqrt{x} = \frac{2}{3} \text{ or}$ $x = \frac{4}{9} \text{ or}$ $(6x + 2)^{2}$ $(9x - 4)(4)$ $x = \frac{4}{9} \text{ or}$	$\frac{1}{4} (\text{or } 0.444, 0.25)$ = $49x \rightarrow 36x^2 - 25x + 4 = 0$ = $49x - 1 = 0$ $\frac{1}{4} (\text{or } 0.444, 0.25) \text{ oe}$	M1 M1 A1 A1 M1A1 M1 A1 [4]	oe e.g 1 solu Both s Attem Attem	solutions require pt to square bot pt to solve (or f	t = 0 Accept e.g. $t = 2/3$ ed cao h sides	
	uл	$r 2.04$ $= \frac{d}{dx} (6x+k) \rightarrow \frac{7}{2} x^{\frac{-1}{2}} = 6$	M1 A1 M1		$b^2 - 4ac (= 0)$	ivatives	
	$x = \frac{49}{144}$,	$y = \frac{49}{12} \to k = \frac{49}{24}$ or 2.04	A1 [2]				

	Page 5	Mark Scheme: Teache	ers' versio	n	<u>9709_s12_ms_</u> 11 Syllabus Paper	
	l uge e	GCE AS/A LEVEL – Ma	9709 11			
6	(i) $2p^2 - 2p$ u.v = 0 (p+1)(p-1)	M1 B1 A1	[3]	Correct method for scalar product Scalar product = 0 cao Both solutions required		
	$20 = \sqrt{41}$	$\begin{array}{l} 0 + 18 = 20\\ \hline 41 \text{ or } \mathbf{v} = \sqrt{13}\\ \times \sqrt{13} \times \cos\theta \text{ oe}\\ \text{ or } 0.523 \text{ rads} \end{array}$	M1 M1 M1 A1	[4]	Use of $x_1x_2 + y_1y_2 + z_1z_2$ Correct method for moduli All connected correctly cao	
7	$S_{10} = 5[2 -$	(a) $S_{10} = \frac{10}{2[2+9(\cos^2 x - 1)]}$ $S_{10} = 5[2-9\sin^2 x]$ $S_{10} = 10-45\sin^2 x$			Correct formula with $d = \pm(\cos^2 x - 1)$ Use of $c^2 + s^2 = 1$ in a correct S_{10} Or $a = 10, b = 45$	
		$<)\frac{1}{3}\tan^2\theta < 1$ oe $<)\theta < \frac{\pi}{3}$	M1 A1	[2]	Allow < cao Allow <	
		$= \frac{1}{1 - \frac{1}{3} \tan^2 \frac{\pi}{6}}$ = $\frac{9}{8}$ or 1.125	M1 A1	[2]	сао	
8	(i) $(x-2)^2 -$	4 + <i>k</i>	B1B1	[2]	a = -2, b = -4	
		+ or $[k-4, \infty]$ or $(k-4, \infty)$ oe	B1√	[1]	ft <i>their</i> $k - 4$. Accept >	
	(iii) smallest v		B1√	[1]	ft their 2	
		$\frac{1}{v+4-k}$ $+\sqrt{x+4-k}$ $\frac{1}{2}x > k-4 \text{ or } [k-4, \infty]$	$M1$ $A1\sqrt[h]{}$ $A1$ $B1\sqrt[h]{}$	[4]	ft from <i>their</i> part (i) cao ft from <i>their</i> part (ii). Accept >	

							9 <u>s12_ms_</u> 11		
Page 6		ge 6	Mark Scheme: Teachers' version			Syllabus 9709	Paper		
			GCE AS/A LEVEL – May/	E AS/A LEVEL – May/June 2012			11		
			1						
9	(i)	M = (1, 4)) gradient = $\frac{1}{2}$ soi	B1B1					
	grad of $MB = -2$ soi			M1 A1√		Use of $m_1m_2 = -1$			
		Equation $MB: y - 4 = -2(x - 1)$ When $y = 0, x = 3$ or $B = (3, 0)$				Or $y = -2x + 6$ ft on a			
		when y –	0, x - 5 of $B - (5, 0)$	A1√ [^]	[5]	ft result of putting $y =$	o into <i>metr</i> equ		
	(ii) grad of $AB = -\frac{2}{6}$; grad of $BC = \frac{6}{2}$ oe		M1√^		At least one correct 🖑	ist one correct 🖡			
		$m_1 m_2 = -$	$m_1m_2 = -1 (\Longrightarrow AB \perp AC)$			AG Allow omitted conclusion			
					[2]				
	(iii)	D = (-1, 8)		B1					
		$AD = \sqrt{40}$	$\overline{0}$ or 6.32	B 1	[2]				
					[4]				
10	(i) $3x^2 - 4x + 1 (<)5$			M1			Attempt differentiate & put 5 on RHS		
		(3x+2)(x	(z-2) < 0	M1		Attempt to factorise or	solve		
		$-\frac{2}{3} < x <$	2 or $\left[-\frac{2}{3}, 2\right]$ or $\left(-\frac{2}{3}, 2\right)$.	A2		SC Allow A1 for $-\frac{2}{3}$	and 2 seen		
		Allow <			[4]	5			
	(ii)	$3x^2 - 4x - 4x$	$+1 = 0 \Longrightarrow (3x - 1)(x - 1) = 0$	M1		Derivative = $0 \& any$ a	attempt to solve		
		$x = \frac{1}{3}$ or	1	A1		Both			
		$y = \frac{4}{27}$ o	r 0	A1		Both			
		21							
		f''(x) = 6x	$-4 \to f''\left(\frac{1}{3}\right) = -2 \; (<0);$						
		f''(1) = 2		M1		Or other valid method			
		max at $\left(\frac{1}{2}\right)$	$\left[\frac{1}{3}, \frac{4}{27}\right]; \text{ min at } (1, 0) \text{ cao}$	A1		Allow just x values or	just y values		
		(.	5 21)		[5]	given for identification	1		

	9709_s12_ms_1								
	Page 7 Mark Scheme: Teachers' version					Syllabus	Paper		
	GCE AS/A LEVEL – May/June 2012					9709	11		
11	(i) $x = \frac{4}{y^2} - 1$			[1]	AG	G At least 1 step of working needed			
	(ii) $\int \left(\frac{4}{y^2} - 1\right)^2$	$dy = \left[-\frac{4}{y} - y \right]$	B1B1						
	Upper lin	nit = 2	B1		For -	$-\frac{4}{v}, -y$			
	$\left[\left(-\frac{4}{2}-2\right)\right]$	(-4-1)	M1		Appl	Apply limits 1 and <i>their</i> 2 'correctl			
	1		A1	[5]	SC E	C B2 for $\int 2(x+1)^{-\frac{1}{2}} dx - 3 \to 1$			
	(iii) $(\pi) \int x^2 dx$	$dy = (\pi) \int \left(\frac{16}{y^4} - \frac{8}{y^2} + 1 \right) dy$ B1B1							
	$\left(\pi\right)\left[\frac{-16}{3y^3} + \frac{8}{y} + y\right]$		B1						
	$(\pi)\left[\left(\frac{-16}{24}\right)\right]$	$\left[\frac{5}{2}+4+2\right] - \left(\frac{-16}{3}+8+1\right)$	M1		Appl	y limits 1 and the	vir 2 'correctly'		
	$\frac{5\pi}{3}$		A1	[5]					