9709 s12 ms 11

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	11

$1 \quad \begin{aligned} & \tan 2 x=2 \\ & 2 x=63.4 \text { or } 243.4 \\ & x=31.7 \text { or } 121.7 \text { (allow } 122) \end{aligned}$	M1 A1 A1A1 ${ }^{\wedge}$ [4]	1 solution sufficient For $2^{\text {nd }} \mathrm{A} 1$ allow $90+1^{\text {st }}$ soln prov. only 2 solns in range. Alt methods possible
$2[7 \mathrm{C} 3] \times\left[\left(2 x^{3}\right)^{4}\right] \times\left[\left(-1 / x^{2}\right)^{3}\right]$ seen soi $35 \times 2^{4} \times(-1)^{3}$ leading to their answer soi $-560\left(x^{6}\right)$ as answer	$\begin{array}{\|l} \text { B1B1 } 1 \\ \text { B1 } \\ \text { B1 } \end{array}$	2 elements correct, $3^{\text {rd }}$ element correct 2 elements correct. Identifying reqd term SC B3 for $\left[560(x)^{6}\right]$ as answer
$3 \quad A Q($ or $r)=\sqrt{3}$ Area $\Delta=\sqrt{3}$ (or area $\Delta \mathrm{AQC}=\frac{\sqrt{3}}{2}$) Area sector $A P R=\frac{1}{2}(\sqrt{3})^{2} \times \frac{\pi}{3}=\frac{\pi}{2}$ Shaded region $=\sqrt{3}-\frac{\pi}{2}$ oe cao	B1 B1 ${ }^{\wedge}$ M1A1 ${ }^{\text {人 }}$ A1	soi Allow 1.73 soi ft their $\sqrt{3}$ Allow 1.73 ft their $\sqrt{3}$. Allow 1.57. SCA1 for $\pi / 4$ from $\frac{1}{2}(\sqrt{3})^{2} \times \frac{\pi}{6}$ provided $\Delta=\frac{\sqrt{3}}{2}$
$4 \quad 1000 k=3.2 \Rightarrow k=\frac{3.2}{1000}$ or $\frac{2}{625}$ or 0.0032 oe $\begin{aligned} & \left(\frac{\mathrm{d} M}{\mathrm{~d} r}\right)=3 k r^{2} \\ & \frac{\mathrm{~d} M}{\mathrm{~d} t}=\frac{\mathrm{d} M}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t} \text { used e.g. } 3 \times k \times 10^{2} \times 0.1 \\ & 0.096 \end{aligned}$	M1A1 B1 M1 A1	Must eventually make $\mathrm{d} M / \mathrm{d} t$ subject cao. Non-calculus methods (e.g. \rightarrow 0.09696) can score only $1^{\text {st }} 2$ marks
5 (i) $\begin{aligned} & 6 x+2=7 \sqrt{x} \Rightarrow 6(\sqrt{x})^{2}-7 \sqrt{x}+2=0 \\ & (3 \sqrt{x}-2)(2 \sqrt{x}-1)=0 \\ & \sqrt{x}=\frac{2}{3} \text { or } \frac{1}{2} \\ & x=\frac{4}{9} \text { or } \frac{1}{4}(\text { or } 0.444,0.25) \end{aligned}$ OR $\begin{aligned} & (6 x+2)^{2}=49 x \rightarrow 36 x^{2}-25 x+4=0 \\ & (9 x-4)(4 x-1)=0 \\ & x=\frac{4}{9} \text { or } \frac{1}{4}(\text { or } 0.444,0.25) \text { oe } \end{aligned}$ $\begin{aligned} & \text { (ii) } 7^{2}-4 \times 6 \times k(=0) \\ & k=\frac{49}{24} \text { or } 2.04 \\ & \text { OR } \frac{\mathrm{d}}{\mathrm{~d} x}\left(7 x^{\frac{1}{2}}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}(6 x+k) \rightarrow \frac{7}{2} x^{\frac{-1}{2}}=6 \\ & \quad x=\frac{49}{144}, y=\frac{49}{12} \rightarrow k=\frac{49}{24} \text { or } 2.04 \end{aligned}$	M1 M1 A1 A1 M1A1 M1 A1 [4] M1 A1 M1 A1 [2]	Expressing as a clear quadratic soi oe e.g. $(3 t-2)(2 t-1)=0$ 1 solution sufficient. Accept e.g. $t=2 / 3$ Both solutions required cao Attempt to square both sides Attempt to solve (or formula etc.) Apply $b^{2}-4 a c(=0)$ Attempt to equate derivatives

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	11

6 (i) $\begin{aligned} & 2 p^{2}-2 p+2+12 p+6 \rightarrow 2 p^{2}+10 p+8 \\ & \text { u.v }=0 \\ & (p+1)(p+4)=0 \rightarrow p=-1 \text { or } p=-4 \end{aligned}$ (ii) $\begin{aligned} & \mathbf{u . v}=2+0+18=20 \\ & \|\mathbf{u}\|=\sqrt{41} \text { or }\|\mathbf{v}\|=\sqrt{13} \\ & 20=\sqrt{41} \times \sqrt{13} \times \cos \theta \text { oe } \\ & \theta=30.0^{\circ} \text { or } 0.523 \mathrm{rads} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & \\ & {[3]} \\ \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & {[4]} \end{array}$	Correct method for scalar product Scalar product $=0$ cao Both solutions required Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Correct method for moduli All connected correctly cao
$7 \quad$ (a) $\begin{aligned} & S_{10}=\frac{10}{2\left[2+9\left(\cos ^{2} x-1\right)\right]} \\ & S_{10}=5\left[2-9 \sin ^{2} x\right] \\ & S_{10}=10-45 \sin ^{2} x \end{aligned}$ (b) (i) $\begin{aligned} & (0<) \frac{1}{3} \tan ^{2} \theta<1 \\ & (0<) \theta<\frac{\pi}{3} \end{aligned}$ (ii) $\begin{aligned} & S_{\infty}=\frac{1}{1-\frac{1}{3} \tan ^{2} \frac{\pi}{6}} \\ & S_{\infty}=\frac{9}{8} \text { or } 1.125 \end{aligned}$	M1 M1 A1 [3] M1 A1 [2] M1 A1 [2]	Correct formula with $d= \pm\left(\cos ^{2} x-1\right)$ Use of $c^{2}+s^{2}=1$ in a correct S_{10} Or $a=10, b=45$ Allow < cao Allow < cao
8 (i) $(x-2)^{2}-4+k$ (ii) $\mathrm{f}(x)>k-4$ or $[\mathrm{k}-4, \infty]$ or $(\mathrm{k}-4, \infty)$ oe (iii) smallest value of $p=2$ (iv) $\begin{aligned} & x-2=(\pm) \sqrt{y+4-k} \\ & x=2+\sqrt{y+4-k} \\ & \mathrm{f}^{-1}(x)=2+\sqrt{x+4-k} \end{aligned}$ Domain is $x>k-4$ or $[\mathrm{k}-4, \infty]$ or $(k-4, \infty)$ oe	B1B1 [2] B1 ^ [1] B1 $\hat{}$ 人 [1] M1 A1^ A1 B1 ^ [4]	$a=-2, b=-4$ ft their $k-4$. Accept $>$ ft their 2 ft from their part (i) cao ft from their part (ii). Accept $>$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	11

$9 \quad$ (i) $\quad M=(1,4) \quad$ gradient $=\frac{1}{2}$ soi grad of $M B=-2$ soi Equation $M B: y-4=-2(x-1)$ When $y=0, x=3$ or $\mathrm{B}=(3,0)$ (ii) grad of $A B=-\frac{2}{6}$; grad of $B C=\frac{6}{2}$ oe $m_{1} m_{2}=-1(\Rightarrow A B \perp A C)$ (iii) $\begin{aligned} & D=(-1,8) \\ & A D=\sqrt{40} \text { or } 6.32 \end{aligned}$	$\begin{array}{ll} \text { B1B1 } & \\ \text { M1 } & \\ \text { A1^ } & \\ \text { A1^ } & \\ & {[5]} \\ \text { M1 } \uparrow & \\ \text { A1 } & \\ & {[2]} \\ \text { B1 } & \\ \text { B1 } & \\ & {[2]} \end{array}$	Use of $m_{1} m_{2}=-1$ Or $y=-2 x+6 \mathrm{ft}$ on their $1 / 2$ or M ft result of putting $y=0$ into their eqn At least one correct $\hat{\downarrow}$ AG Allow omitted conclusion
10 $\text { (i) } \begin{aligned} & 3 x^{2}-4 x+1(<) 5 \\ & (3 x+2)(x-2)<0 \\ & -\frac{2}{3}<x<2 \text { or }\left[-\frac{2}{3}, 2\right] \text { or }\left(-\frac{2}{3}, 2\right) . \end{aligned}$ Allow < (ii) $\begin{aligned} & 3 x^{2}-4 x+1=0 \Rightarrow(3 x-1)(x-1)=0 \\ & x=\frac{1}{3} \text { or } 1 \\ & y=\frac{4}{27} \text { or } 0 \\ & \mathrm{f}^{\prime \prime}(x)=6 x-4 \rightarrow \mathrm{f}^{\prime \prime}\left(\frac{1}{3}\right)=-2(<0) \\ & \mathrm{f}^{\prime \prime}(1)=2(>0) \end{aligned}$ \max at $\left(\frac{1}{3}, \frac{4}{27}\right) ;$ min at $(1,0)$ cao	M1 M1 A2 [4] M1 A1 A1 M1 A1 [5]	Attempt differentiate \& put 5 on RHS Attempt to factorise or solve SC Allow A1 for $-\frac{2}{3}$ and 2 seen Derivative $=0$ \& any attempt to solve Both Both Or other valid method Allow just x values or just y values given for identification

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9709	$\mathbf{1 1}$

11 (i) $x=\frac{4}{y^{2}}-1$
(ii) $\int\left(\frac{4}{y^{2}}-1\right) \mathrm{d} y=\left[-\frac{4}{y}-y\right]$

Upper limit $=2$
$\left[\left(-\frac{4}{2}-2\right)-(-4-1)\right]$
1
(iii) $(\pi) \int x^{2} \mathrm{~d} y=(\pi) \int\left(\frac{16}{y^{4}}-\frac{8}{y^{2}}+1\right) \mathrm{d} y$

$$
\begin{aligned}
& (\pi)\left[\frac{-16}{3 y^{3}}+\frac{8}{y}+y\right] \\
& (\pi)\left[\left(\frac{-16}{24}+4+2\right)-\left(\frac{-16}{3}+8+1\right)\right] \\
& \frac{5 \pi}{3}
\end{aligned}
$$

B1

B1B1

B1
M1
A1
[5]

B1B1

B1

M1

A1
[1]

AG At least 1 step of working needed

For $-\frac{4}{y},-y$
Apply limits 1 and their 2 'correctly' SC B2 for $\int 2(x+1)^{-\frac{1}{2}} \mathrm{~d} x-3 \rightarrow 1$
[5]

