Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\begin{aligned} & \mathrm{E}(T)=9.6 \\ & \operatorname{Var}(\mathrm{wt} \text { of one bag })=0.0016 \\ & \operatorname{Var}(T)=3 \times 0.0016 \\ & \mathrm{sd} \text { of } T=\sqrt{ }(3 \times 0.0016)=0.0693 \end{aligned}$	B1 M1 M1 A1 [4]	May be impl. by $\operatorname{Var}(T)=0.0048$ or 0.0144
[Total: 4]			
2	$\begin{aligned} & \bar{X} \sim \mathrm{~N}\left(3, \frac{\frac{9}{4}}{60}\right) \\ & \frac{2.8-3}{\sqrt{\frac{9}{4}}}(=-1.033) \\ & \Phi("-1.033 ")=1-\Phi(" 1.033 ") \\ & =0.151 \end{aligned}$	B2 M1 M1 A1 [5]	B1 for $\mathrm{N} \& \mu=3$; (oe) B1 for $9 / 4 / 60$ or $3 / 80$ or 0.0375 (oe) (oe working with totals or proportions) With or without c.c. With cc of $-{ }^{1} / 120, \Phi(-1.076)=1-\Phi(1.076)=$ 0.141
[Total: 5]			
3 (i)	Constant average rate of goals scored Goals random Goals indep	$\begin{aligned} & \text { B1 } \\ & \text { B1 [2] } \end{aligned}$	Any two given in context (SR score B1 for any two not in context) Not Goals scored singly (because this is inherent in the context so it's not a condition)
(ii)	$\begin{aligned} & \mathrm{e}^{-1.8}\left(\frac{1.8^{3}}{3!}+\frac{1.8^{4}}{4!}+\frac{1.8^{5}}{5!}\right) \\ & =0.259 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	Poisson probs, $\lambda=1.8$. Allow 2,6 included
(iii)	$\begin{aligned} & 1-\mathrm{e}^{-1.8} \\ & \left(1-\mathrm{e}^{-1.8}\right)^{10} \\ & =0.164 \end{aligned}$	M1 M1 A1 [3]	Any λ. Allow end errors.
[Total: 7]			
$4 \quad$ (i)	$\begin{aligned} & \bar{x}=8.4 \\ & 8.4 \pm z \frac{1.3}{\sqrt{15}} \\ & z=2.576 \\ & {[7.54,9.26]} \end{aligned}$	B1 M1 B1 A1 [4]	Accept 2.574 to 2.579 or equiv. Accept 7.53. Accept 9.27
(ii)	No because pop normal so \bar{X} normally distr	$\begin{aligned} & \text { B1 } \\ & \text { B1 [2] } \end{aligned}$	SR If 'Yes' or no conclusion, but 2 correct statements score B1
(iii)	8 within CI Claim justified	B1 $\sqrt{ }$ B1 $\sqrt{ }$ [2]	ft (i)
[Total: 8]			

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

$5 \quad$ (i)	$\begin{aligned} & \operatorname{Po}(3.3) \\ & \mathrm{e}^{-3.3}\left(1+3.3+\frac{3.2^{2}}{2}\right) \\ & =0.359 \end{aligned}$	B1 M1 A1 [3]	seen or implied Poisson $\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2)$. Allow $+\mathrm{P}(3)$ Allow wrong λ. Accept equiv method.
(ii)	$\begin{aligned} & X \sim \operatorname{Po}(36) \\ & X \sim \mathrm{~N}(36,36) \\ & \frac{48.5-36}{\sqrt{36}} \\ & =2.08(3) \end{aligned}$ comp with 1.96 Evidence to support claim	B1 B1 M1 A1 M1 A1 $\sqrt{ }$ [6]	Allow with no or wrong cc or no $\sqrt{ }$ 2.08(3) or 0.0186/0.0187 if area comparison Valid comparison Correct conclusion (ft their z)
[Total: 9]			
$6 \quad$ (i)	$\mathrm{H}_{0}: \mathrm{P}(6)=\frac{1}{6} \quad \mathrm{H}_{1}: \mathrm{P}(6)>\frac{1}{6}$	B1 [1]	Condone undefined p
(ii)	$\begin{aligned} & \left(\begin{array}{l} \left(\frac{5}{6}\right)^{10}+10 \times\left(\frac{5}{6}\right)^{9} \times \frac{1}{6}+\binom{10}{2} \times\left(\frac{5}{6}\right)^{8} \times \frac{1^{2}}{6}+\binom{10}{3} \times\left(\frac{5}{6}\right)^{7} \times\left(\frac{1}{6}\right)^{3} \\ 1-\left(\left(\frac{5}{6}\right)^{10}+10 \times\left(\frac{5}{6}\right)^{9} \times \frac{1}{6}+\binom{10}{2} \times\left(\frac{5}{6}\right)^{8} \times\left(\frac{1}{6}\right)^{2}\right. \\ \left.\quad \quad \quad+\binom{10}{3} \times\left(\frac{5}{6}\right)^{7} \times\left(\frac{1}{6}\right)^{3}\right) \\ =0.0697(3 \mathrm{sfs}) \end{array}\right. \end{aligned}$	M1 M1 A1 [3]	(1 -) $\mathrm{P}(0,1,2,3)$ o.e. using $\mathrm{B}(10,1 / 6)$ allow end errors Attempt at fully correct expression for 1 - $\mathrm{P}(0,1,2,3)$ o.e. Accept 0.0698
(iii)	Die biased towards a six but result <4 so no evidence of bias	B1 [1]	or equiv. Must be in context
(iv)	$\mathrm{P}(0,1,2$ or 3 sixes $)$ $\begin{aligned} & \left.\left(\frac{1}{2}\right)^{10}+10 \times\left(\frac{1}{2}\right)^{9} \times \frac{1}{2}+\binom{10}{2}^{2} \times\left(\frac{1}{2}\right)^{8} \times\left(\frac{1}{2}\right)^{2}+\binom{10}{3} \times\left(\frac{1}{2}\right)^{7} \times\left(\frac{1}{2}\right)^{3}\right) \\ & =0.172 \text { or } 11 / 64 \end{aligned}$	B1 M1 A1 [3]	Stated or attempted. Can be implied Attempt at $\mathrm{P}(0,1,2,3)$ with $\mathrm{p}=1 / 2$, allow end errors.
[Total: 8]			

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	72

$7 \quad$ (i)	$\begin{aligned} & \int_{-1}^{1} k(1-x) \mathrm{d} x=1 \\ & \left(k\left[x-\frac{x^{2}}{2}\right]_{-1}^{1}=1\right) \\ & 2 k=1 \\ & \left(k=\frac{1}{2} \quad \text { AG }\right) \end{aligned}$	M1 A1 [2]	Attempt integ $\mathrm{f}(x)=1$ with correct limits
(ii)	$\begin{aligned} & \left(\int_{0.5}^{1} \frac{1}{2}(1-x) \mathrm{d} x=\frac{1}{2}\left[x-\frac{x^{2}}{2}\right]_{0.5}^{1}\right) \\ & =\frac{1}{16} \text { or } 0.0625 \end{aligned}$	B1 [1]	
(iii)	$\begin{aligned} & \int_{-1}^{1} \frac{1}{2}\left(x-x^{2}\right) \mathrm{d} x \\ & =\frac{1}{2}\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{1} \\ & =-\frac{1}{3} \text { or }-0.333 \end{aligned}$	M1 A1 A1 [3]	$\int x \mathrm{f}(x) \mathrm{d} x$ ignore limits Correct integrand and limits
(iv)	$\begin{aligned} & \int_{-1}^{a} \frac{1}{2}(1-x) \mathrm{d} x=0.25 \\ & \left(\frac{1}{2}\left[x-\frac{x^{2}}{2}\right]_{-1}^{a}=0.25\right) \\ & \left(\frac{1}{2}\left(a-\frac{a^{2}}{2}-\left(-1-\frac{1}{2}\right)=0.25\right)\right. \\ & a^{2}-2 a-2=0 \\ & a=1-\sqrt{ } 3 \text { or }-0.732 \end{aligned}$	M1 A1 A1 [3]	Correct limits (or integral from a to $1=0.75$) any correct QE with " $=0$ " (or in completed square form $(a-1)^{2}=3$) Not $a=1 \pm \sqrt{3} ;$ Not -0.732 or 2.732
[Total: 9]			

