		970	9 s11 ms 72
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	72

1	E(T) = 9.6 Var(wt of one bag) = 0.0016 Var(T) = 3 × 0.0016 sd of T = $\sqrt{(3 \times 0.0016)} = 0.0693$	B1 M1 M1 A1[4]	May be impl. by $Var(T) = 0.0048$ or 0.0144
2	$\overline{X} \sim N(3, \frac{\frac{9}{4}}{60})$ $\frac{2.8 - 3}{\sqrt{\frac{9}{4}}} (= -1.033)$ $\Phi((-1.033'') = 1 - \Phi((1.033''))$ $= 0.151$	B2 M1 M1 A1[5]	B1 for N & $\mu = 3$; (oe) B1 for ${}^{9/4}/_{60}$ or ${}^{3}/_{80}$ or 0.0375 (oe) (oe working with totals or proportions) With or without c.c. With cc of $-{}^{1}/_{120}$, $\Phi(-1.076) = 1 - \Phi(1.076) = 0.141$
		[Total: 5]	
3 (i)	Constant average rate of goals scored Goals random Goals indep	B1 B1 [2]	Any two given in context (SR score B1 for any two not in context) Not Goals scored singly (because this is inherent in the context so it's not a condition)
(ii)	$e^{-1.8}\left(\frac{1.8^3}{3!} + \frac{1.8^4}{4!} + \frac{1.8^5}{5!}\right) = 0.259$	M1 A1[2]	Poisson probs, $\lambda = 1.8$. Allow 2, 6 included
(iii)	$ \begin{array}{l} 1 - e^{-1.8} \\ (1 - e^{-1.8})^{10} \\ = 0.164 \end{array} $	M1 M1 A1[3]	Any λ . Allow end errors.
		[Total: 7]	
4 (i)	$\bar{x} = 8.4$ $8.4 \pm z \frac{1.3}{\sqrt{15}}$ $z = 2.576$ [7.54, 9.26]	B1 M1 B1 A1[4]	Accept 2.574 to 2.579 or equiv. Accept 7.53. Accept 9.27
(ii)	No because pop normal so \overline{X} normally distr	B1 B1 [2]	SR If 'Yes' or no conclusion, but 2 correct statements score B1
(iii)	8 within CI Claim justified	$B1\sqrt{B1\sqrt{12}}$	ft (i)
		[Total: 8]	

r					<u> </u>			
	Page 5		Mark Scheme: Teachers' version		Syllabus	Paper		
l			GCE AS/A LEVEL – May/June	e 2011		9709	72	
5	(i)	Po(3.3) $e^{-3.3}(1 + 3.3 + \frac{3.3^2}{2})$ = 0.359		B1 M1 A1[3]	seen or implied Poisson P(0) + P(1) + P(2). Allow + F Allow wrong λ . Accept equiv method.		P(2). Allow + P(3)	
	(ii)	$X \sim Po(36)$ $X \sim N(36, 36)$ $\frac{48.5 - 36}{\sqrt{36}}$ = 2.08(3) comp with 1.96 Evidence to support claim		B1 B1 M1 A1 M1 A1√ [6]	Allow with no or wrong cc or no $\sqrt{2.08(3)}$ or 0.0186/0.0187 if area comparison Valid comparison Correct conclusion (ft their <i>z</i>)			
	[Total: 9]							
6	(i)	H ₀ : P(6) = $\frac{1}{6}$ H ₁ : P(6) > $\frac{1}{6}$		B1[1]	Condone undefined <i>p</i>			
	(ii)	$\left(\frac{5}{6}\right)^{10} + 10 \times \left(\frac{5}{6}\right)^9 \times \frac{1}{6} + {\binom{10}{2}} \times \left(\frac{5}{6}\right)^8 \times \frac{1}{6}^2 + {\binom{10}{3}} \times \left(\frac{5}{6}\right)^7 \times \left(\frac{1}{6}\right)^{10}$		M1	(1 –) P(0,1,2,3) o.e. using B(10,1/6) allow end errors		ng B(10,1/6)	
		$1 - \left(\left(\frac{5}{6}\right)^{10} + \right)$	$+10 \times \left(\frac{5}{6}\right)^9 \times \frac{1}{6} + {\binom{10}{2}} \times \left(\frac{5}{6}\right)^8 \times \left(\frac{1}{6}\right)^2$ ${\binom{10}{3}} \times \left(\frac{5}{6}\right)^7 \times \left(\frac{1}{6}\right)^3$	M1	Attempt at fully correct expression for $1 - P(0,1,2,3)$ o.e.			
		= 0.0697	(3 sfs)	A1[3]	Accept 0.0698			
	(iii)	Die biased towards a six but result < 4 so no evidence of bias		B1[1]	or equiv. Must be in context		ntext	
	(iv)	P(0, 1, 2 o	r 3 sixes)	B1	Stated or attempted. Can be implied		n be implied	
		$\left(\left(\frac{1}{2}\right)^{10} + 10 \times = 0.172 \text{ or}$	$\left(\frac{1}{2}\right)^{9} \times \frac{1}{2} + {\binom{10}{2}} \times \left(\frac{1}{2}\right)^{8} \times \left(\frac{1}{2}\right)^{2} + {\binom{10}{3}} \times \left(\frac{1}{2}\right)^{7} \times \left(\frac{1}{2}\right)^{3})$ 11/64	M1 A1[3]	Attempt at P(0,1,2,3) with $p = 1/2$, allow end errors.			
	[Total: 8]							

9709 sl						
Page 6		Mark Scheme: Teachers' version		Syllabus	Paper	
		GCE AS/A LEVEL – May	GCE AS/A LEVEL – May/June 2011		72	
7 (i)	$\int_{-1}^{1} k(1-x)$)dx = 1	M1	Attempt integ $f(x) = 1$ w	with correct limits	
	$(k[x - \frac{x^2}{2}])$ $2k = 1$ $(k = \frac{1}{2} A$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1$	A1 [2]			
(ii)	$(\int_{0.5}^{1} \frac{1}{2} (1 - \frac{1}{16}) = \frac{1}{16} \text{ or } 0.0$	$x)dx = \frac{1}{2} \left[x - \frac{x^2}{2} \right]_{0.5}^{1} $ 0625	B1[1]			
(iii)	$\int_{-1}^{1} \frac{1}{2} (x - x)^{1/2} dx = 0$	$(x^2)dx$	M1	$\int x f(x) dx$ ignore limits	5	
	$=\frac{1}{2}\left[\frac{x^2}{2}-\right]$	$\frac{x^3}{3}]_{-1}^1$	A1	Correct integrand and limits		
	$=-\frac{1}{3}$ or -	0.333	A1[3]			
(iv)	$\int_{-1}^{a} \frac{1}{2} (1 - x) \left(\frac{1}{2} \left[x - \frac{x^2}{2} \right] \right)$	f(x) = 0.25 - $\int_{-1}^{a} = 0.25$	M1	Correct limits (or integral from <i>a</i> to $1 = 0.75$)		
	$(\frac{1}{2}(a - \frac{a^2}{2})) = \frac{1}{2}(a - \frac{a^2}{2}) = \frac{1}{2}(a - \frac{1}{2}) = \frac{1}{2}(a - $	$2 - (-1 - \frac{1}{2}) = 0.25)$ 2 = 0 or -0.732	A1 A1[3]	any correct QE with "= completed square form Not $a = 1 \pm \sqrt{3}$; Not -0.	0"(or in $(a-1)^2 = 3$) 732 or 2.732	
	1		[Total: 9]			