		970	9 s11 ms 6	53
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
-	GCE AS/A LEVEL – May/June 2011	9709	63	7

1	(i)	$(3.6 \times 9 + 64) / 24$ = 4.02 years	M1 A1	[2]	Mult by 9, adding 64 then dividing by 24 Correct answer
	(ii)	$\frac{\Sigma x_A^2}{9} - 3.6^2 = 1.925^2$	M1		Attempt to find Σx_A^2 using correct variance formula
		$\Sigma x_A^2 = 150$	A1		Correct Σx_A^2
		$\frac{150.0 + 352}{24} - 4.017^2 = 4.780$	M1		Using 352 + their 150 in correct variance formula
		sd = 2.19	A1	[4]	Correct answer
2	(i)	$4 \times 3 \times 7$ = 84	B1	[1]	Correct answer
	(ii)	10! - 9! × 2 = 2903040 (2900000)	B1 B1	[2]	$10! - k \times 9!$ seen oe Correct answer
		<i>OR</i> 8! × 9 × 8 = 2903040 (2900000)	B1 B1		8! \times 9 \times <i>l</i> seen oe Correct answer
	(iii)	${}^{9}C_{1} + {}^{9}C_{2} + \dots + {}^{9}C_{9}$	M1 M1		Using combinations Adding 9 combinations
		= 511	A1	[3]	Correct answer
		$OR \ 2^9 - 1$	M1 M1		2 ⁹ seen Subtracting 1
		= 511	A1		Correct answer
3	(i)	$median_A < 35 \text{ or } 20 \le median_A < 35 \text{ or}$ $median_A = 33.0/33.1/33.5/33.6$ $or median_B \ge 50 \text{ or } 50 \le median_B < 70 \text{ or}$ $median_B = 51.7/51.9/52.2/52.4$ $median_B > median_A$	B1 B1	[2]	Correct numerical statement re median _A or median _B Correct numerical statement re other median and a conclusion
		<i>OR A</i> has 66 cand 50 < mark < 100, so $med_A < 50$ or <i>B</i> has 156 cand 50 < mark < 100, so $med_B > 50$	B1		As before
		$median_B > median_A$	B1		As before
		159 - 68 = 91	B1	[1]	Correct final answer
	(iii)	mean= $\binom{4.5 \times 25 + 14.5 \times 43 + 27 \times 91}{+ \dots + 84.5 \times 40}$ /300	M1		Using an attempt at mid-points, not end points or class widths
			M1		Using an attempt at frequencies, not cum freqs
			M1		Sum of 6 prods, correct freqs, divided by 300
		= 11270 / 300 = 37.6	A1	[4]	Correct answer

		970	9 s11 ms 63
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	63

		r		
4 (i)	(a) P(final score is 12) = P(6, 6) = $1/36$	B1	[1]	Correct answer
	(b) $P[(1,5) + (1,4) + (2,3) + (3,2) + (4,1)]$ = 5/36	M1 M1 A1	[3]	Considering P(1, 5) Considering P[(1,4) + $(2,3) + (3,2) + (4,1)$] Correct answer
(ii)	$\mathbf{P}(A) = 1/6$	[
	P(B) = P[(1,5) + (2,4) + (3,3) + (4, 2) + (5,1)] = 5/36 P(C) = 1 - P(O, O) = 3/4	B1 B1		Any two of $P(A)$, $P(B)$ and $P(C)$ correct Third probability correct
	P(A and B) = P(1 and 5) = 1/36 $\neq P(A) \times P(B)$ P(A and C) = P[(2,5) + (4,5) + (6,5)] = 3/36 $\neq P(A) \times P(C)$	M1		Numerical attempt to compare $P(X \text{ and } Y)$ with $P(X) \times P(Y)$, must be three positive probs
	P(B and C) = P[(2,4) + (4,2)] = 2/36			
	$\neq P(B) \times P(C)$ None are independent.	A1√		One correct comparison and conclusion, ft their probabilities
		A1	[5]	Correct conclusion(s) following legitimate working
5 (i)	$z = \pm 1.751$	B1		Correct z
	$\pm \frac{20-\mu}{\mu/4} = 1.751$	M1		Standardising no cc, no sqrt, must be a <i>z</i> -value
	$\mu = 13.9$	A1	[3]	Correct answer
(ii)	$P(X < 10) = P(z < \pm \frac{10 - 13.91}{13.91/4})$	M1		Standardising attempt with 10, their μ and their $\mu/4$, no cc, no sqrt
	= P(z < -1.124) = 1 - 0.8694 = 0.131	M1		" $\Phi_1 + \Phi_2 - 1$ ", ft their mean
	P(10 < X < 20) = 0.96 - 0.131 = 0.829 or 0.830	A1	[3]	Correct answer
(iii)	$\mu = 250 \times 0.96 = 240$ $\sigma^2 = 250 \times 0.96 \times 0.04 = 9.6$	B1		240 and 9.6 or sq rt 9.6 seen unsimplified
	$P(\ge 235) = 1 - \Phi\left(\pm \frac{234.5 - 240}{\sqrt{9.6}}\right)$	M1		Standardising, with or without cc, must have sq rt in denom
		M1		Continuity correction 234.5 or 235.5 only
	$= \Phi (1.775)$ = 0.962	M1 A1	[5]	Correct region > 0.5, ft their mean Correct answer

		970	9 s11 ms 6	3
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2011	9709	63	

6 (i)	$(0.75)^n < 0.06$	M1*		Equation or inequality with 0.75^n and 0.06 or 0.94 seen
	<i>n</i> > 9.78	M1d	ep*	Attempt at solving by trial and error (can be implied) or using logarithms correctly
	n = 10	A1	[3]	Correct answer
(ii)	$E(X) = 14 \times 0.75 \text{ or } 10.5$ Try $P(10) = {}^{14}C_{10}(0.75){}^{10}(0.25){}^{4} = 0.220$	M1		Evaluating binomial probability for an integer value directly above or below their mean
	$P(11) = {}^{14}C_{11}(0.75)^{11}(0.25)^3 = 0.240$	M1		Evaluating the other binomial probability
	(mode is) 11	A1	[3]	Correct answer
	OR	M1		Evaluating binomial $P(n)$ and $P(n + 1)$
		M1 A1		Evaluating binomial P(10), P(11) and P(12) Correct answer
(iii)	$P(> 11) = {}^{14}C_{12}(0.75)^{12}(0.25)^2 + {}^{14}C_{13}(0.75)^{13}(0.25)^1$	M1		A binomial term of the form ${}^{14}C_n p^{n}(1-p)^{14-n}$ seen, $n \neq 0$ or 14
	$+(0.75)^{14}$	M1		Summing binomial P(12, 13, 14) or P(11, 12, 13, 14,)
	= 0.281	A1		Correct answer $0.280 - 0.282$
	$P(3) = {}^{5}C_{3} (0.2811)^{3} (0.7189)^{2}$	M1		A binomial term of the form ${}^{5}C_{3}p^{3}(1-p)^{2}$ seen, any p
	= 0.115	A1	[5]	Correct answer