		970	9 s11 ms 43
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	43

1		M1		For using WD = Fdcos α
	$8200 = 180 \times 50 \cos \alpha$	A1		
	$\alpha = 24.3$	A1	[3]	
2		M1		For using $DF = P/v$
		M1		For using Newton's second law when $v = 19$ or when $v = 30$
	$P/19 - R = 1250 \times 0.6$ and $P/30 - R = 1250 \times 0.16$	A1		
	$[19R + 19 \times 1250 \times 0.6] = 30R + 30 \times 1250 \times 0.16]$	M1		For attempting to eliminate P or R
	R = 750 or P = 28500	A1		
	P = 28500 or R = 750	B1ft	[6]	ft wrong answer for R or P substituted into a correct linear equation.
3	(i) $a_P = gsin30^\circ$	B1		
	$3.2 = \frac{1}{2} g t_q^2$	B1		
	$[6.4 = u(0.8) + \frac{1}{2} 5 \times (0.8)^2]$	M1		For applying $s = ut + \frac{1}{2} at^2$ to P
	u = 6	A1	[4]	
	(ii) [v = 6 + 5 × 0.8 or v ² = 36 + 2×5×6.4]	M1		For using $v = u + at$ or $v^2 = u^2 + 2as$ for P
	Speed of P is 10 ms ⁻¹	A1	[2]	
	Alternative for Parts (i) and (ii) when a is not used:			
	<u>Part (i)</u> $3.2 = \frac{1}{2} gt_q^2$ For using KE gain = PE loss to obtain an equation in u and v	B1		
	[$\frac{1}{2}(v^2 - u^2) = 6.4gsin30^{\circ}$] For using s = $\frac{1}{2}(u + v)t$ to obtain a second equation in u and v	M1		
	$[6.4 = \frac{1}{2}(u + v) \times 0.8]$	DM1	[4]	
	u = o	AI	[4]	
	<u>Fart (II)</u> Substitutes for u to find v	M1		
	Speed is 10 ms ⁻¹	A1	[2]	

		970	9 s11 ms 43
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	43

4	(i)	For correct shading composite figure consisting of 2 rectangles: 1^{st} has boundaries $t = 0 & t = 20$, $v = 0$ and $v = 2.5$; 2^{nd} has boundaries $t = 20 & t = T$, v = 0 and $v = 4$	B1	[1]	
	(ii)	[50 + 4(T - 20) = 70 or 4T - 30 = 70]	M1		For attempt to find equation in T
		T = 25	A1	[2]	
	(iii)	[Distance = $70 + (4 - 2.5)20$ or 50 + 4[(T - 20) + 20] - 50]	M1		For identifying and using area representing required distance
		Distance between P and Q is 100 m	A1ft	[2]	ft 4T
	(iv)	For 2 straight line segments representing P, 1^{st} with +ve slope and 2^{nd} with steeper slope, $t = 20$ indicated appropriately	B1		
		For Q, 1^{st} & 2^{nd} segments parallel to P's and displaced to the right, t = 25 and t = 45 indicated appropriately	B1ft	[2]	ft T and T + 20
5	(i)		M1		For resolving forces in the x direction or the y direction
		$F_x - 6.1 - 5 \times 0.28 = 0$ and $F_y + 4.8 - 5 \times 0.96 = 0$	A1		
		Frictional force acts parallel to x axis and to the right	A1		
		$F_y = 0 \rightarrow F = F_x$ \rightarrow Frictional force has magnitude 7.5 N	A1	[4]	AG
	(ii)	$[\mu = 7.5/(1.25 \times 10)]$	M1		For using $F = \mu R$ and $R = mg$
		Coefficient is 0.6	A1	[2]	
	(iii)	$[7.5 - 8.6 - 1.4 = 1.25a \rightarrow a = -2]$	M1		For applying Newton's second law
		Magnitude of acceleration is 2 ms^{-2}	A1		
		Direction of acceleration is parallel to x axis and to the left	B1	[3]	

		-			<u>9709_s11_ms_4</u> 3				
Page		e 6	Mark Scheme: Teacl	Syllabus	Paper	er			
			GCE AS/A LEVEL – N	lay/Jun	e 2011		9709	43	
6	(i)	Gain in I	$PE = 15000g \times 500sin2.5^{\circ} J$	B1					
		WD aga	inst the resistance = $800 \times 500 \text{ J}$	B1					
		[3271454 + 400000]				For using WD by driving force = Gain in PE + WD against resistance			
		Work do	one is 3670000 J or 3670 kJ	A1	[4]				
						Alternatively,M1For resolving forces up the planeM1Driving Force = $800 + 15000gsin2.5^{\circ}$ A1For usingWD = Driving Force $\times 500$ M1Work done is 3670000JA1			
	(ii)	Work do Gain in	one by DF = 2000×500 J KE = $\frac{1}{2} 15000(v^2 - 20^2)$	B1 B1					
				M1		For usin against 1	g Gain in KE = I resistance + WD	Loss in PE – by driving fo	WD orce
		¹ ⁄ ₂ 15000 1000000	$P(v^2 - 20^2) = 3271454 - 400000 + 0$	A1					
		Speed of	f the lorry is 30.3 ms ⁻¹	A1	[5]	Alternat For appl 2000 + 1 For usin	ively, lying Newton's so 15000gsin2.5 - 8 g v ² = u ² + 2as	econd law 00 = 15000a	M1 A1 M1
						$v^2 = 20^2$ Speed is	$+ 2 \times 0.5162 \times 5$ 30.3 ms^{-1}	00	A1 A1
7	(i)			M1		For usin	$g v(t) = \int a dt$		
		$v = \frac{1}{160}$	$t^3 - \frac{1}{3200}t^4$ (+ C ₁)	A1					
		$[0 = 800] \rightarrow C_1 =$	$0/160 - 160000/3200 + C_1$ 0]	M1		For usin	g v(20) = 0		
		Initial sp	beed is zero	A1	[4]	AG			
	(ii)	[t ² /800(1	(5-t) = 0	M1		For solv	ing a = 0		
		$v_{max} = v($	$(15) = 5.27 \text{ ms}^{-1}$	A1	[2]				
	(iii)	(iii)		M1		For usin	$g s(t) = \int v dt$		
		$s = \frac{1}{640}$	$t^4 - \frac{1}{16000}t^5 \ (+ C_2)$	A1ft					
		[250-2	00]	M1		For usin	g limits 0 and 20	(or equivale	nt)
		Distance	e AB is 50 m	A1	[4]				