9709 s11 ms_41

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	41

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

6	(i)	M1		For using $\mathrm{s}=\int v d t$
	$s=2 t^{2}-t^{4} / 64(+C)$	A1		
	$\left[\mathrm{t}^{4}-128 \mathrm{t}^{2}+64^{2}=0\right]$	M1		For attempting to solve $\mathrm{s}(\mathrm{t})=64$
	$\left(\mathrm{t}^{2}-64\right)^{2}=0$	A1		
	Time taken is 8 s	A1	[5]	
	(ii)	M1		For using $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$
	$\mathrm{a}=4-3 \mathrm{t}^{2} / 16$	A1		
	a is positive for $0<\mathrm{t}<\frac{8}{\sqrt{3}}$ or	B2	[4]	SR: Allow B1 for $\mathrm{t}<\frac{8}{\sqrt{3}}$
	$0<\mathrm{t}<4.62$			SR: B1 for $0 \leq \mathrm{t} \leq \frac{8}{\sqrt{3}}$ or 4.62
7	(i)	M1		For applying Newton's second law to A or to B
	$\mathrm{T}-12=1.2 \mathrm{a}$ and $20-\mathrm{T}=2 \mathrm{a}$	A1		Accept $(2-1.2) \mathrm{g}=(2.0+1.2) \mathrm{a}$ as an alternative for one of these equations
	Acceleration is $2.5 \mathrm{~ms}^{-2}$	B1		
	Tension is 15 N	A1	[4]	
	(ii) (a) PE gain $=12 \times 1.5=18 \mathrm{~J}$	B1		
	(b) WD on $\mathrm{A}=15 \times 1.5=22.5 \mathrm{~J}$	B1		
	(c) Gain in $\mathrm{KE}=$ ans(b) - ans(a) $=4.5 \mathrm{~J}$	B1ft	[3]	alt: $\mathrm{KE}=1 / 21.2(2 \times 2.5 \times 1.5)=4.5 \mathrm{~J}$
(iii) $\mathrm{v}=1.6 \times 2.5$		B1ft		
		M1		For using $\mathrm{v}=\mathrm{u}-\mathrm{gt}$
	$\mathrm{t}=0.4 \mathrm{~s}$	A1		May be implied
	Total time taken is 0.8 s	A1	[4]	

