		9709	9 s11 ms 41
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	41

1	(i)	$[DF - 600 = 700 \times 2]$	M1		For using Newton's second law (3 terms needed)
		Driving force is 2000 N	A1	[2]	
	(ii)	$[P = 2000 \times 15]$	M1		For using $P = Fv$
		Rate of working is 30000 W (or 30 kW)	A1ft	[2]	
2	(i)	Gain in PE = 1250g × 1.54 (= 19250 J)	B1		
		$[WD = 1250g \times 1.54 + 5750]$	M1		For using WD by crane = Gain in PE + WD against resistance
		Work done is 25000 J (or 25 kJ)	A1	[3]	
	(ii)	[1250 = 25000 / T]	M1		for using $P = \Delta(WD) / \Delta t$
		Time is 20 s	A1ft	[2]	ft Ans(i) ÷ 1250
3			M1		For resolving forces horizontally or vertically (3 terms needed)
	$T\cos\theta + T\sin\theta = 15.5$		A1		AEF
	-Tc	$-\mathrm{T}\mathrm{cos}\theta + \mathrm{T}\mathrm{sin}\theta = 8.5$			AEF
			DM1		For solving for Tsin $ heta$ and Tcos $ heta$
	$T\sin\theta = 12$ and $T\cos\theta = 3.5$		A1		AG
	$\theta =$	$\theta = 73.7^{\circ} \text{ (or } 1.29^{\circ} \text{)}$		[6]	
4	(i)		M1		For resolving forces parallel to the plane (either case) -3 terms needed
		$2X + F = 11gsin30^{\circ}$ and $9X - F = 11gsin30^{\circ}$	A1		
		X = 10	A1	[3]	
	(ii)	F = 35	B1		May be implied.
		$R = 11gcos30^{\circ}$	B1		
			DM1		For using $\mu = F/R$
		Coefficient is 0.367	A1ft	[4]	
5	(i)	$v(600) = 0.025 \times 600$	B1		
			M1		For using $0 = v(600 + 2600) - 0.0375t_3$ and v(600 + 2600) = v(600)
		$0 = 15 - 0.0375 t_3$	A1		
		Total time is 3600 s	A1	[4]	
	(ii)	For correct graph	M1	_	Shape only
		$[d = \frac{1}{2} (2600 + 3600) \times 15 \text{ or} d = \frac{1}{2} 0.025 \times 600^2 + 2600 \times 15 + \frac{1}{2} 0.0375 \times 400^2]$	A1ft		For method of finding distance
		Distance is 46500	Alft	[3]	
	(iii)	Values of t are 300 and 3400	B1	[1]	

						9709	9 <u>s11_ms_4</u> 1	
	Page 5 Mark Scheme: Teacl		ners' version		Syllabus	Paper		
			GCE AS/A LEVEL – N	lay/Jun	e 2011	9709	41	
6	(i)			M1		For using $s = \int v dt$		
		s = 1	$2t^2 - t^4/64$ (+ C)	A1				
		$[t^4 - 128t^2 + 64^2 = 0]$ $(t^2 - 64)^2 = 0$		M1		For attempting to solve $s(t) = 64$		
				A1				
		Tim	e taken is 8 s	A1	[5]			
	(ii)	ii)		M1		For using $a = dv/dt$		
		a =	$4 - 3t^2/16$	A1				
		o ic	positive for $0 < t < \frac{8}{2}$ or	ЪJ	[4]	SP: Allow P1 for $t < \frac{8}{2}$		
			positive for $0 < t < \sqrt{3}$ of	D2	[4]	SK. Allow B1 lot $t < \sqrt{3}$		
		0 <	1 < 4.02			SR: B1 for $0 \le t \le \frac{\sigma}{\sqrt{3}}$ or	4.62	
7	(i)			M1		For applying Newton's second law or to B		
		T - 12 = 1.2a and $20 - T = 2aAcceleration is 2.5 ms-2Tension is 15 N$		A1		Accept $(2 - 1.2)g = (2.0 + a)g$ alternative for one of these	1.2)a as an equations	
				B1				
				A1	[4]			
	(ii)	(a)	PE gain = 12 × 1.5 = 18 J	B1				
		(b)	WD on $A = 15 \times 1.5 = 22.5J$	B1				
		(c)	Gain in KE = $ans(b) - ans(a) = 4.5 J$	B1ft	[3]	alt: KE = $\frac{1}{2}$ 1.2(2 × 2.5 ×	1.5) = 4.5J	
	(iii)	(iii) $v = 1.6 \times 2.5$		B1ft				
				M1		For using $v = u - gt$		
		t = ().4 s	A1		May be implied		
		Tota	al time taken is 0.8 s	A1	[4]			