			9709	<u>_s11_m</u>	<u>s_3</u> 3
	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	r 🗌
		GCE AS/A LEVEL – May/June 2011	9709	33	
1	Use law for th	e logarithm of a product, power or quotient		M1*	
		ct linear equation, e.g. $(2x-1)\ln 5 = \ln 2 + x \ln 3$		A1	
	Solve a linear	•			dep*)
	Obtain answer			A1	[4]
	[SR: Reduce e	equation to the form $a^x = b$ M1*, obtain $\left(\frac{25}{3}\right)^x = 10$ A1, u	ise correct method	to	
	calculate value	e of x M1(dep*), obtain answer 1.09 A1.]			
2	Use correct qu	otient or product rule		M1	
	Obtain correct	derivative in any form, e.g. $-\frac{3 \ln x}{x^4} + \frac{1}{x^4}$		A1	
		ive to zero and solve for x an equation of the form $\ln x = a$,	, where $a > 0$	M1	
	Obtain answer	$exp(\frac{1}{3})$, or 1.40, from correct work		A1	[4]
3		ration by parts and reach $k(1-x)e^{-\frac{1}{2}x} \pm k\int e^{-\frac{1}{2}x}dx$, or equiv	alent	M1	
	Obtain – 2(1 –	$x)e^{-\frac{1}{2}x} - 2\int e^{-\frac{1}{2}x}dx$, or equivalent		A1	
	Integrate and o	obtain $-2(1-x)e^{-\frac{1}{2}x} + 4e^{-\frac{1}{2}x}$, or equivalent		A1	
		0 and $x = 1$, having integrated twice		M1	
	Obtain the giv	en answer correctly		A1	[5]
4		$(\pm B)$ formula correctly at least once and obtain an equation	in $tan\theta$	M1	
		correct horizontal equation in any form		A1	
		$0^{\circ} = \sqrt{3}$ throughout		M1	Г и Э
	Obtain th	e given equation correctly		A1	[4]
	(ii) Set $k = 3^{-1}$	$\sqrt{3}$ and obtain $\tan^2 \theta = \frac{1}{11}$		B1	
	Obtain an	swer 16.8°		B1√	
		swer 163.2°		B1	[3]
	[Ignore an misread.]	nswers outside the given interval. Treat answers in radians	(0.293 and 2.85) as	s a	

Pa	ige 5 Mark Scheme: Teachers' version		9709 syllabus	Pape	
		GCE AS/A LEVEL – May/June 2011	9709	33	
(i)	Substitute	$x = \frac{1}{2}$ and equate to zero, or divide, and obtain a correct or $x = \frac{1}{2}$	rect equation, e.g.		
	$\frac{1}{8}a + \frac{1}{4}b$	$+\frac{5}{2}-2=0$		B1	
	Substitute Obtain a o Solve for	x = 2 and equate result to 12, or divide and equate constant recorrect equation, e.g. $8a + 4b + 10 - 2 = 12$	emainder to 12	M1 A1 M1 A1	[5]
(ii)	Attempt of	livision by $2x - 1$ reaching a partial quotient $\frac{1}{2}ax^2 + kx$		M1	
	Obtain qu	adratic factor $x^2 - x + 2$ is earned if inspection has an unknown factor $Ax^2 + Bx + 2$ ar	nd an equation in A	A1	[2
		or an unknown factor of $\frac{1}{2}ax^2 + Bx + C$ and an equation in <i>E</i>			
(i)		ognisable sketch of a relevant graph over the given range e other relevant graph and justify the given statement		B1 B1	[2]
(ii)		the sign of $\cot x - (1 + x^2)$ at $x = 0.5$ and $x = 0.8$, or equivalent the argument with correct calculated values	t	M1 A1	[2
(iii)	Obtain fir Show suf	erative formula correctly at least once with $0.5 \le x_n \le 0.8$ hal answer 0.62 ficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or sl the interval (0.615, 0.625)	how there is a sign	M1 A1 A1	[3
(i)	Use the q root and u	uadratic formula, completing the square, or the substitution	z = x + iy to find a	M1 A1	[2
(ii)		the modulus of both roots is 2 the argument of $-\sqrt{3} + i$ is 150° or $\frac{5}{6}\pi$ (2.62) radians		B1√ B1√	
		t the argument of $-\sqrt{3} - i$ is -150° (or 210°) or $-\frac{5}{6}\pi$ ((-2.62) radians or		
	$\frac{7}{6}\pi$ (3.67			B1√	[3]
(iii)	Verify that	an attempt to find the sixth power of a root at one of the roots satisfies $z^6 = -64$ at the other root satisfies the equation		M1 A1 A1	[3

© University of Cambridge International Examinations 2011

Га	ge 6	Mark Scheme: Teachers' version Syllabus	<u>s11 ms</u> Paper	
		GCE AS/A LEVEL – May/June 2011 9709	33	
(i)	Use prod	uct and chain rule	M1	
()	-	prrect derivative in any form, e.g. $15 \sin^2 x \cos^3 x - 10 \sin^4 x \cos x$	A1	
		erivative to zero and obtain a relevant equation in one trigonometric function	M1	
	Obtain 2	$\tan^2 x = 3$, $5\cos^2 x = 2$, or $5\sin^2 x = 3$	A1	
		aswer $x = 0.886$ radians	A1	[5
(ii)	State or in	mply $du = -\sin x dx$, or $\frac{du}{dx} = -\sin x$, or equivalent	B1	
		ntegral in terms of u and du	M1	
	Obtain ±	$\int 5(u^2 - u^4) du$, or equivalent	A1	
	Integrate	and use limits $u = 1$ and $u = 0$ (or $x = 0$ and $x = \frac{1}{2}\pi$)	M1	
	Obtain ar	nswer $\frac{2}{3}$, or equivalent, with no errors seen	A1	[5
(i)	State or in	mply $\frac{dx}{dt} = k(10 - x)(20 - x)$ and show $k = 0.01$	B1	[]
(ii)		variables correctly and attempt integration of at least one side	M1	
	Carry ou	t an attempt to find A and B such that $\frac{1}{(10-x)(20-x)} \equiv \frac{A}{10-x} + \frac{B}{20-x}$, or		
	equivalen	ıt	M1	
	Obtain A	$=\frac{1}{10}$ and $B=-\frac{1}{10}$, or equivalent	A1	
	Integrate	and obtain $-\frac{1}{10}\ln(10-x) + \frac{1}{10}\ln(20-x)$, or equivalent	A1√	
		and obtain term 0.01 <i>t</i> , or equivalent	A1	
		a constant, or use limits $t = 0$, $x = 0$, in a solution containing terms of the form x , $b \ln(20 - x)$ and ct	M1	
	Obtain ar	nswer in any form, e.g. $-\frac{1}{10}\ln(10-x) + \frac{1}{10}\ln(20-x) = 0.01t + \frac{1}{10}\ln 2$	A1 $$	
		of logarithms to correctly remove logarithms	M1	
	Rearrang	e and obtain $x = 20(\exp(0.1t) - 1)/(2\exp(0.1t) - 1)$, or equivalent	A1	[9

Page 7		ge 7	9709_s1 Mark Scheme: Teachers' version Syllabus F		_
		-	GCE AS/A LEVEL – May/June 2011 9709	33	
0	(i)	EITHER:	Express general point of <i>l</i> or <i>m</i> in component form, e.g. $(2 + \lambda, -\lambda, 1 + 2\lambda)$ or $(\mu, 2 + 2\mu, 6 - 2\mu)$ Equate at least two pairs of components and solve for λ or for μ	B1 M1	
			Obtain correct answer for λ or μ (possible answers for λ are -2 , $\frac{1}{4}$, 7 and for μ are 0, $2\frac{1}{4}$, $-4\frac{1}{2}$)	A1	
		OR:	Verify that all three component equations are not satisfied State a relevant scalar triple product, e.g.	A1	
		on.	$(2\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}) \cdot ((\mathbf{i} - \mathbf{j} + 2\mathbf{k}) \times (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}))$ Attempt to use the correct method of evaluation Obtain at least two correct simplified terms of the three terms of the	B1 M1	
			expansion of the triple product or of the corresponding determinant, e.g. -4 , -8 , -15 Obtain correct non-zero value, e.g. -27 , and state that the lines do not	A1	
			intersect	A1	[4]
	(ii)	ii) Carry out the correct process for evaluating scalar product of direction vectors for <i>l</i> and Using the correct process for the moduli, divide the scalar product by the product of			
			d evaluate the inverse cosine of the result wer 47.1° or 0.822 radians	M1 A1	[3
	(iii)	EITHER:	Use scalar product to obtain $a - b + 2c = 0$ Obtain $a + 2b - 2c = 0$, or equivalent, from a scalar product, or by subtracting two point equations obtained from points on <i>m</i> , and solve for one		
			ratio, e.g. $a : b$ Obtain $a : b : c = -2 : 4 : 3$, or equivalent	M1* A1	
			Substitute coordinates of a point on <i>m</i> and values for <i>a</i> , <i>b</i> and <i>c</i> in general equation and evaluate <i>d</i> Obtain answer $-2x + 4y + 3z = 26$, or equivalent	M1(d A1	lep*
		OR1:	Attempt to calculate vector product of direction vectors of l and m Obtain two correct components Obtain $-2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, or equivalent	M1* A1 A1	
			Form a plane equation and use coordinates of a relevant point to evaluate d Obtain answer $-2x + 4y + 3z = 26$, or equivalent	A1 M1(d A1	lep*
		OR2:	Form a two-parameter plane equation using relevant vectors State a correct equation e.g. $\mathbf{r} = 2\mathbf{j} + 6\mathbf{k} + \mathbf{s}(\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + \mathbf{t}(\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})$ State three correct equations in <i>x</i> , <i>y</i> , <i>z</i> , <i>s</i> and <i>t</i> Eliminate <i>s</i> and <i>t</i> Obtain answer $-2x + 4y + 3z = 26$, or equivalent	M1* A1 A1 M1(0 A1	lep* [5]