Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	31

1 Either: Obtain $1+\frac{1}{3} k x$, where $k= \pm 6$ or ± 1
Obtain $1-2 x$
Obtain $-4 x^{2}$ A1
Obtain $-\frac{40}{3} x^{3}$ or equivalent A1

Or: Differentiate expression to obtain form $k(1-6 x)^{-\frac{2}{3}}$ and evaluate $\mathrm{f}(0)$ and $\mathrm{f}^{\prime}(0)$
Obtain $\mathrm{f}^{\prime}(x)=-2(1-6 x)^{-\frac{2}{3}}$ and hence the correct first two terms $1-2 x$
Obtain $\mathrm{f}^{\prime \prime}(x)=-8(1-6 x)^{-\frac{5}{3}}$ and hence $-4 x^{2}$
Obtain $\mathrm{f}^{\prime \prime \prime}(x)=-80(1-6 x)^{-\frac{8}{3}}$ and hence $-\frac{40}{3} x^{3}$ or equivalent

2
(i) Obtain $\frac{k \cos 2 x}{1+\sin 2 x}$ for any non-zero constant k

Obtain $\frac{2 \cos 2 x}{1+\sin 2 x}$
A1
(ii) Use correct quotient or product rule

Obtain $\frac{x \sec ^{2} x-\tan x}{x^{2}}$ or equivalent

3 (i) Obtain $\pm\left(\begin{array}{c}3 \\ -4 \\ 6\end{array}\right)$ as normal to plane
Form equation of p as $3 x-4 y+6 z=k$ or $-3 x+4 y-6 z=k$ and use relevant point to find k
Obtain $3 x-4 y+6 z=80$ or $-3 x+4 y-6 z=-80$
(ii) State the direction vector $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ or equivalent

Carry out correct process for finding scalar product of two relevant vectors
Use correct complete process with moduli and scalar product and evaluate $\sin ^{-1}$ or $\cos ^{-1}$ of result
Obtain 30.8° or 0.538 radians

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	31

4 (i) Verify that $-96+100+8-12=0$
Attempt to find quadratic factor by division by $(x+2)$, reaching a partial quotient $12 x^{2}+k x$, inspection or use of an identity
Obtain $12 x^{2}+x-6$
State $(x+2)(4 x+3)(3 x-2)$
[The M1 can be earned if inspection has unknown factor $A x^{2}+B x-6$ and an equation in A and/or B or equation $12 x^{2}+B x+C$ and an equation in B and/or C.]
(ii) State $3^{y}=\frac{2}{3}$ and no other value

Use correct method for finding y from equation of form $3^{y}=k$, where $k>0$
Obtain -0.369 and no other value

5 (i) Use at least one of $\mathrm{e}^{2 x}=9, \mathrm{e}^{y}=2$ and $\mathrm{e}^{2 y}=4$
Obtain given result $58+2 k=c \quad$ AG
B1
(ii) Differentiate left-hand side term by term, reaching $a \mathrm{e}^{2 x}+b \mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}+c \mathrm{e}^{2 y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$

Obtain $12 \mathrm{e}^{2 x}+k \mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 \mathrm{e}^{2 y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Substitute $(\ln 3, \ln 2)$ in an attempt involving implicit differentiation at least once, where RHS $=0$

M1
Obtain $108-12 k-48=0$ or equivalent A1
Obtain $k=5$ and $c=68$ A1

6 (i) State or imply area of segment is $\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta$ or $50 \theta-50 \sin \theta \quad$ B1
Attempt to form equation from area of segment $=\frac{1}{5}$ of area of circle, or equivalent
Confirm given result $\theta=\frac{2}{5} \pi+\sin \theta$
(ii) Use iterative formula correctly at least once

Obtain value for θ of 2.11
Show sufficient iterations to justify value of θ or show sign change in interval (2.105, 2.115)

Use correct trigonometry to find an expression for the length of $A B$
e.g. $20 \sin 1.055$ or $\sqrt{200-200 \cos 2.11}$

Hence 17.4
$[2.1 \rightarrow 2.1198 \rightarrow 2.1097 \rightarrow 2.1149 \rightarrow 2.1122]$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	31

7 (i) State or imply $\mathrm{d} x=2 t \mathrm{~d} t$ or equivalent \quad B1
Express the integral in terms of x and $\mathrm{d} x$ M1
Obtain given answer $\int_{1}^{5}(2 x-2) \ln x \mathrm{~d} x$, including change of limits $\quad \mathbf{A G}$
(ii) Attempt integration by parts obtaining $\left(a x^{2}+b x\right) \ln x \pm \int\left(a x^{2}+b x\right) \frac{1}{x} \mathrm{~d} x$ or equivalent

Obtain $\left(x^{2}-2 x\right) \ln x-\int\left(x^{2}-2 x\right) \frac{1}{x} \mathrm{~d} x$ or equivalent
Obtain $\left(x^{2}-2 x\right) \ln x-\frac{1}{2} x^{2}+2 x$
Use limits correctly having integrated twice M1
Obtain $15 \ln 5-4$ or exact equivalent
[Equivalent for M1 is $\left.(2 x-2)(a x \ln x+b x)-\int(a x \ln x+b x) 2 \mathrm{~d} x\right]$

8 (i) Either: Multiply numerator and denominator by (1-2i), or equivalent

Refer to u being on negative imaginary axis or equivalent and confirm argument

$$
\text { as }-\frac{1}{2} \pi
$$

Or: Using correct processes, divide moduli of numerator and denominator M1
Obtain 3
A1
Subtract argument of denominator from argument of numerator M1
Obtain $-\tan ^{-1} \frac{1}{2}-\tan ^{-1} 2$ or $-0.464-1.107$ and hence $-\frac{1}{2} \pi$ or -1.57
A1
(ii) Show correct half-line from u at angle $\frac{1}{4} \pi$ to real direction

Use correct trigonometry to find required value
Obtain $\frac{3}{2} \sqrt{2}$ or equivalent
(iii) Show, or imply, locus is a circle with centre $(1+\mathrm{i}) u$ and radius 1

Use correct method to find distance from origin to furthest point of circle M1
Obtain $3 \sqrt{2}+1$ or equivalent

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	31

9 (i) Express $\cos 4 \theta$ as $2 \cos ^{2} 2 \theta-1$ or $\cos ^{2} 2 \theta-\sin ^{2} 2 \theta$ or $1-2 \sin ^{2} 2 \theta \quad$ B1
Express $\cos 4 \theta$ in terms of $\cos \theta \quad$ M1
Obtain $8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
Use $\cos 2 \theta=2 \cos ^{2} \theta-1$ to obtain given answer $8 \cos ^{4} \theta-3 \quad$ AG A1
(ii) (a) State or imply $\cos ^{4} \theta=\frac{1}{2}$

Obtain 0.572
Obtain - 0.572 B1
(b) Integrate and obtain form $k_{1} \theta+k_{2} \sin 4 \theta+k_{3} \sin 2 \theta$

Obtain $\frac{3}{8} \theta+\frac{1}{32} \sin 4 \theta+\frac{1}{4} \sin 2 \theta$
Obtain $\frac{3}{32} \pi+\frac{1}{4}$ following completely correct work

10 (i) Separate variables correctly and integrate of at least one side M1
Carry out an attempt to find A and B such that $\frac{1}{N(1800-N)} \equiv \frac{A}{N}+\frac{B}{1800-N}$, or equivalent M1
Obtain $\frac{2}{N}+\frac{2}{1800-N}$ or equivalent
Integrates to produce two terms involving natural logarithms
Obtain $2 \ln N-2 \ln (1800-N)=t$ or equivalent
Evaluate a constant, or use $N=300$ and $t=0$ in a solution involving $a \ln N, b \ln (1800)$ and $c t$
Obtain $2 \ln N-2 \ln (1800-N)=t-2 \ln 5$ or equivalent A1
Use laws of logarithms to remove logarithms M1
Obtain $N=\frac{1800 \mathrm{e}^{\frac{1}{2} t}}{5+\mathrm{e}^{\frac{1}{2} t}}$ or equivalent A1
(ii) State or imply that N approaches 1800 B1

