Page 4	Mark Scheme: Teachers' version Syllabus	09_s11_m Paper	
l uge +	GCE AS/A LEVEL – May/June 2011 9709	31	
Either: Obta	in $1 + \frac{1}{3}kx$, where $k = \pm 6$ or ± 1	M1	
	$\frac{1}{1-2x}$ $\frac{1}{1-2x}$	A1 A1	
	in $-\frac{40}{3}x^3$ or equivalent	A1 A1	
<u>Or</u> : Diffe	erentiate expression to obtain form $k(1-6x)^{-\frac{2}{3}}$ and evaluate $f(0)$ and $f'(0)$	M1	
Obta	in $f'(x) = -2(1-6x)^{-\frac{2}{3}}$ and hence the correct first two terms $1-2x$	A1	
Obta	in $f''(x) = -8(1-6x)^{-\frac{5}{3}}$ and hence $-4x^2$	A1	
Obta	in $f'''(x) = -80(1-6x)^{-\frac{8}{3}}$ and hence $-\frac{40}{3}x^3$ or equivalent	A1	[4
(i) Obtain $\frac{h}{1}$	$\frac{1}{x} \frac{\cos 2x}{\cos 2x}$ for any non-zero constant k	M1	
Obtain $\frac{2}{1}$	$\frac{\cos 2x}{+\sin 2x}$	A1	[2
	ct quotient or product rule	M1	
Obtain $\frac{x}{-}$	$\frac{\sec^2 x - \tan x}{x^2} \text{ or equivalent}$	A1	[2
	(3)		
(i) Obtain ±	$\begin{pmatrix} 3 \\ -4 \\ 6 \end{pmatrix}$ as normal to plane	B1	
	ation of p as $3x - 4y + 6z = k$ or $-3x + 4y - 6z = k$ and use relevant point to fir x - 4y + 6z = 80 or $-3x + 4y - 6z = -80$	nd <i>k</i> M1 A1	[3
(ii) State the	direction vector $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ or equivalent	B1	
Carry out	correct process for finding scalar product of two relevant vectors ct complete process with moduli and scalar product and evaluate sin ⁻¹ or co	M1	
of re		M1	

Obtain 30.8° or 0.538 radians

A1 [4]

Page 5		Mark Scheme: Teachers' version	Syllabus	s11_ms Paper	
	•	GCE AS/A LEVEL – May/June 2011	9709	31	
(i)	•	t $-96 + 100 + 8 - 12 = 0$ o find quadratic factor by division by (x + 2), reaching a partial	l quotient	B1	
		+ kx , inspection or use of an identity	quotient	M1	
	Obtain 12			Al	
		2)(4x+3)(3x-2)		A1	[4
		can be earned if inspection has unknown factor $Ax^2 + Bx - 6$ and $Ax^2 + Bx - 6$ and $Ax^2 + Bx + C$ and an equation in <i>B</i> and/or <i>C</i> and $Ax^2 + Bx + C$ and an equation in <i>B</i> and/or <i>C</i> and $Ax^2 + Bx + C$ and $Ax^2 + Bx$			
(ii)	State $3^{\nu} =$	$\frac{2}{3}$ and no other value		B1	
	Use correc	et method for finding y from equation of form $3^y = k$, where $k \ge 3^{y}$	> 0	M1	
	Obtain –0	369 and no other value		A1	[3
(i)	Use at leas	st one of $e^{2x} = 9$, $e^{y} = 2$ and $e^{2y} = 4$		B1	
		$ren result 58 + 2k = c \qquad AG$		B1	[2
(ii)	Differentia	ate left-hand side term by term, reaching $ae^{2x} + be^{y} \frac{dy}{dx} + ce^{2y} \frac{dy}{dx}$	$\frac{1}{y}$	M1	
	Obtain 12	$e^{2x} + ke^{y}\frac{dy}{dx} + 2e^{2y}\frac{dy}{dx}$	<i></i>	A1	
	Substitute	(ln 3, ln 2) in an attempt involving implicit differentiation at l	east once, where		
	RHS			M1	
		8 - 12k - 48 = 0 or equivalent		A1	Г
	$Obtain \ k =$	= 5 and c = 68		A1	[5
(i)	State or in	nply area of segment is $\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$ or $50\theta - 50\sin\theta$		B1	
	Attempt to) form equation from area of segment = $\frac{1}{5}$ of area of circle, or	equivalent	M1	
		iven result $\theta = \frac{2}{5}\pi + \sin\theta$		A1	[3
(ii)	Use iterati	ve formula correctly at least once		M1	
(11)		ue for θ of 2.11		Al	
		icient iterations to justify value of θ or show sign change in in	terval	111	
		5, 2.115)		A1	
		et trigonometry to find an expression for the length of AB		M1	
		1.055 or $\sqrt{200 - 200 \cos 2.11}$			
	Hence 17.			A1	[5
	FO 1 0 1	$198 \rightarrow 2.1097 \rightarrow 2.1149 \rightarrow 2.1122]$			-

					<u>s11 ma</u>	
	Pa	ge 6	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9709	31	
7	(i)		mply $dx = 2t dt$ or equivalent he integral in terms of x and dx		B1 M1	
		Obtain gi	ven answer $\int_{1}^{5} (2x-2) \ln x dx$, including change of limits A	G	A1	[3]
	(ii)	Attempt i	ntegration by parts obtaining $(ax^2 + bx)\ln x \pm \int (ax^2 + bx) \frac{1}{x}$	dx or equivalent	M1	
		Obtain (x	$(x^2 - 2x)\ln x - \int (x^2 - 2x) \frac{1}{x} dx$ or equivalent		A1	
		Obtain (x	$(x^2 - 2x) \ln x - \frac{1}{2}x^2 + 2x$		A1	
		Use limit	s correctly having integrated twice		M1	
			$5 \ln 5 - 4$ or exact equivalent		A1	[5]
		[Equivale	ent for M1 is $(2x - 2)(ax \ln x + bx) - \int (ax \ln x + bx) 2dx$]			
8	(i)		Multiply numerator and denominator by $(1 - 2i)$, or equival Obtain $-3i$ State modulus is 3 Refer to <i>u</i> being on negative imaginary axis or equivalent as $as -\frac{1}{2}\pi$		M1 A1 A1 t A1	
			Using correct processes, divide moduli of numerator and de Obtain 3 Subtract argument of denominator from argument of numer Obtain $-\tan^{-1}\frac{1}{2} - \tan^{-1}2$ or $-0.464 - 1.107$ and hence $-\frac{1}{2}\pi$	ator	M1 A1 M1 A1	[4]
	(ii)	Show cor Use corre	The rect half-line from u at angle $\frac{1}{4}\pi$ to real direction bet trigonometry to find required value $\sqrt{2}$ or equivalent		B1 M1 A1	[3]
	(iii)	Use corre	imply, locus is a circle with centre $(1 + i)u$ and radius 1 ect method to find distance from origin to furthest point of ci $\sqrt{2}$ +1 or equivalent	rcle	M1 M1 A1	[3]

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	• _
		•	GCE AS/A LEVEL – May/June 2011	9709	31	
	(i)		press $\cos 4\theta$ as $2\cos^2 2\theta - 1$ or $\cos^2 2\theta - \sin^2 2\theta$ or $1 - 2\sin^2 \theta$ or $1 - 2\sin^2 \theta$	$n^2 2\theta$	B1 M1	
			tain $8\cos^4\theta - 8\cos^2\theta + 1$		A1	
			e $\cos 2\theta = 2\cos^2 \theta - 1$ to obtain given answer $8\cos^4 \theta - 3$	AG	A1	[4
	(ii)	(a)	State or imply $\cos^4 \theta = \frac{1}{2}$		B1	
		()	Obtain 0.572		B1	
			Obtain -0.572		B1	[3
		(h)	Integrate and obtain form $k_1\theta + k_2 \sin 4\theta + k_3 \sin 2\theta$		M1	
		(0)	Obtain $\frac{3}{8}\theta + \frac{1}{32}\sin 4\theta + \frac{1}{4}\sin 2\theta$		A1	
			Obtain $\frac{3}{32}\pi + \frac{1}{4}$ following completely correct work		A1	[
0 (i)	(i)	Sep	parate variables correctly and integrate of at least one side		M1	
		Car	rry out an attempt to find A and B such that $\frac{1}{N(1800 - N)} \equiv \frac{A}{N} + \frac{A}{N}$	$\frac{B}{1800-N}$, or equivalent	M1	
		Obt	tain $\frac{2}{N} + \frac{2}{1800 - N}$ or equivalent		A1	
		Inte	egrates to produce two terms involving natural logarithms		M1	
			tain 2 ln $N-2$ ln $(1800 - N) = t$ or equivalent		A1	
		Eva	aluate a constant, or use $N = 300$ and $t = 0$ in a solution involve	ing <i>a</i> ln <i>N</i> , <i>b</i> ln(1800)		
			and <i>ct</i>		M1	
			tain 2 ln $N - 2$ ln $(1800 - N) = t - 2$ ln 5 or equivalent		A1	
		Use	e laws of logarithms to remove logarithms		M1	
		Obt	tain $N = \frac{1800e^{\frac{1}{2}t}}{5 + e^{\frac{1}{2}t}}$ or equivalent		A1	[

(ii) State or imply that *N* approaches 1800

B1 [1]