				9709_\$	<u>9709_s11_ms_</u> 2		
Pa		ge 4	Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2011	9709	23		
1	Atte Obt Atte Obt	Attempt use of power law for logarithms Obtain $x\log_3 = x\log_2 + 2\log_2$ or equivalent Attempt solution for x of linear equation Obtain 3.42			M1* A1 M1 A1	dep* [4]	
2	(i)	Show or i Use corre Obtain 3.4	mply correct ordinates 1, $\sqrt{2}$ or 1.414, 3 ct formula, or equivalent, with $h = 1$ 41		B1 M1 A1	[3]	
	(ii)	Obtain 6 - Refer, in justification	- 3.41 and hence 2.59, following their answer to (i) provided some form, to two line segments replacing curve and on of given result that answer is an under-estimate.	l less than 6 conclude with clear	B1√ B1	[2]	
3	(i)	Use the it Obtain at Conclude $[1 \rightarrow 0.95]$	eration process correctly at least once least two correct iterates to 5 decimal places $\alpha = 0.952$ $5647 \rightarrow 0.95257 \rightarrow 0.95223 \rightarrow 0.95220$]		M1 A1 A1	[3]	
	(ii)	State or in Obtain 8x	mply equation is $x = \frac{1}{2}\sqrt[3]{x^2 + 6}$ $x^3 - x^2 - 6 = 0$		B1 B1	[2]	
4	(a)	Obtain in Obtain co Use limit	tegral form of $k \cos \frac{1}{2}x$ rrect $-2\cos \frac{1}{2}x$ s correctly to obtain 1		M1 A1 A1	[3]	
	(b)	Rewrite in Integrate Integrate	ntegrand as $e^{-x} + 1$ to obtain $-e^{-x} \dots$ to obtain $\dots + x + c$		B1 B1 B1	[3]	
5	Obt	ain $4y \frac{dy}{dx}$	as derivative of $2y^2$		B1		
	Diff	ferentiate L	.HS term by term to obtain expression including at least one	$\frac{\mathrm{d}y}{\mathrm{d}x}$	M1		
	Obtain $2x + 4y \frac{dy}{dx} + 5 + 6 \frac{dy}{dx}$						
	Sub	stitute 2 ar	$d-1$ to attempt value of $\frac{dy}{dx}$		M1		
	Obt	$ain -\frac{9}{2}$			A1		
	Obt	ain equatio	on $9x + 2y - 16 = 0$ or equivalent of required form		A1	[6]	

		970							
Pa		ge 5		Mark Scheme: Teachers' version	Syllabus	Paper			
				GCE AS/A LEVEL – May/June 2011	9709	23			
6	(i)	Attempt differentiation using product rule			M1				
Ū	(1)	Obt	ain 82	$x \ln x + 4x$ (a.c.f.)		A1			
		Eau	ate fir	rst derivative to zero and attempt solution		M1			
		Obt	ain 0.0	507		A1			
		Obt	ain –0	.736 following their <i>x</i> -coordinate		A1√	[5]		
	(ii)	Use	an ap	propriate method for determining nature of stationary point		M1			
		Con	clude	point is a minimum (with no errors seen, second derivative	= 8)	A1	[2]		
7	(i)	Sub	stitute	x = -2 and equate to zero		M1			
	(-)	Sub	stitute	e x = -1 and equate to 24		M1			
		Obt	ain 4 <i>a</i>	a - 2b = 38 and $a - b = 20$ or equivalents		A1			
		Atte	empt s	olution of two linear simultaneous equations (dependent on	M1 M1)	M1			
		Obt	ain <i>a</i> =	= -1 and $b = -21$,	A1	[5]		
	(ii)	Atte	empt t	o find quadratic factor by division, inspection or use of iden	titv	M1			
	()	Obt	ain 6x	$^{2}-13x+5$		A1√			
		Con	clude	(x+2)(2x-1)(3x-5)		A1	[3]		
				1 1					
8	(i)	Use	cosec	$e\theta = \frac{1}{\sin\theta}$ and $\sec\theta = \frac{1}{\cos\theta}$		B1			
		Atte	empt t	o simplify left-hand side		M1			
		Con	ıfirm g	given right-hand side $4\cos 2\theta$ with no errors seen		A1	[3]		
	(ii)	(a)	State	or imply $\cos 2\theta = \frac{3}{2}$		B1			
	()			4					
			Atter	npt correct process to find at least one angle		M1			
			Obta	in 20.7°		Al	F 43		
			Obta	in 159.3° and no others in range		AI	[4]		
		(b)	Reco	equise as $\frac{4\cos 30^\circ}{2}$		B1			
		. /		$\sin^2 30^\circ$					
			Obta	in $8\sqrt{3}$		B1	[2]		